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Abstract

Weakly collisional and collisionless astrophysical plasmas are notwell described by
ideal magnetohydrodynamics (MHD) whose validity depends on a high collision
frequency. This thesis aims to address this issue by moving beyond ideal MHD
and the scope of the thesis is twofold. Firstly, we investigate helium mixing in the
weakly collisional intracluster medium of galaxy clusters using Braginskii MHD.
Secondly, we present a newly developed Vlasov-fluid code which can be used for
studying fully collisionless plasmas such as the solar wind and hot accretions flows.

The equations of Braginskii MHD are used to study weakly collisional, strati-
fied atmospheres which offer a useful model of the intracluster medium of galaxy
clusters. Using linear theory and computer simulations, we study instabilities that
feed off thermal and compositional gradients. We find that these instabilities lead
to vigorous mixing of the composition and discuss the potential consequences for
X-ray observations of galaxy clusters.

Collisionless plasmas can be subject to microscale velocity-space instabilities
which are not well-described by Braginskii MHD. In contrast, Vlasov-fluid theory
captures all the kinetic phenomena associated with the ions and is thus well suited
for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid
code which works by evolving the phase-space density distribution of the ions
while treating the electrons as an inertialess fluid. The code uses the particle-in-
cell (PIC) method and several options for particle interpolation (cloud-in-cell and
triangular-shaped-cloud) and several methods for updating the equations in time
(the predictor-corrector and the Horowitz method) are provided. The program-
ming language Python has been chosen for its usability but high performance
is nevertheless maintained and the code is MPI-enabled. The Vlasov-fluid code
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has been tested and is able to convincingly reproduce results from linear theory.
The tests include one-dimensional simulations of plasma instabilities such as the
firehose instability, the ion-cyclotron instability and the ion beam instability and
simulations of waves, such as the ion-acoustic, ion Bernstein, ion-cyclotron and
whistler waves. The thesis also contains a general introduction to the PIC method
including a discussion of aliasing due to the numerical grid and the finite grid
instability. We furthermore study ion-cyclotron damping and Landau damping
of ion-acoustic waves and present a two-dimensional simulation of the parallel
firehose and oblique firehose instability. We conclude the thesis by pointing to
possible future applications of the Vlasov-fluid code.
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Resume

Svagt kollisionale og kollisionsløse, astrofysiske plasmaer er ikke velbeskrevne in-
den for ideel magnetohydrodynamik (MHD), da denne teori beror på en høj kol-
lisionsfrekvens. Denne afhandling har derfor to dele, der benytter to forskellige
teorier, der ligger udover ideel MHD. De to teorier er Braginskii MHD, som er
en fluid-model, der kan benyttes når plasmaet er svagt kollisionalt og Vlasov-fluid
teori, som kan benyttes når ionerne er kollisionsløse og dynamikken på elektron-
skala ikke er essentiel. De to dele udgøres af i) et studie, der benytter Braginskii
MHD til at undersøge blanding af heliumindholdet i det svagt kollisionale inter-
galaktiske medium i galaksehobe og ii) en præsentation af en nyudviklet Vlasov-
fluid kode, der kan benyttes til at studere helt kollisionsløse plasmaer såsom solvin-
den eller massetilvækstsskiver rundt om sorte huller.

Braginskii MHD-ligningerne benyttes til at studere svagt kollisionale atmos-
færer, der udgør en brugbar model til at studere det intergalaktiske medium i
galaksehobe. Ved at benytte lineær teori og computersimuleringer undersøges
plasmainstabiliteter, der drives af gradienter i temperatur og plasmasammensæt-
ning. Det konkluderes at disse plasmainstabiliteter kan medføre en effektiv bland-
ing af plasmasammensætningen og konsekvenserne for røntgenobservationer af
galaksehobe diskuteres.

Kollisionsløse plasmaer kan undergå instabilitet på mikrofysisk skala, hvis der
er anisotropi i hastighedsfordelingen af partikler. Sådanne instabiliteter er ikke
velbeskrevne inden for Braginskii MHD. Vlasov-fluid teori beskriver derimod
alle de kinetiske fænomener, der er associerede med ionerne og er derfor veleg-
net til at studere et kollisionsløst plasma. Vi har udviklet en ny kode, der kan
løse Vlasov-fluid ligningerne ved at beregne tidsudviklingen af ionernes faserums-
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densitet, mens elektronerne behandles som en væske uden inerti. Koden benyt-
ter partikel-i-celle (PIC) metoden og har flere forskellige valgmuligheder for in-
terpolation (CIC og TSC) samt flere forskellige valgmuligheder for opdatering
i tid (predictor-corrector- og Horowitzmetoden). Det dynamiske og fortolkede
programmeringssprog Python er blevet valgt for dets brugervenlighed, men ikke
desto mindre kan koden køre på mange processorer ved hjælp af MPI og den
udviser god performance. Vlasov-fluid koden er blevet testet og kan på overbe-
visende vis reproducere resultater fra lineær teori. Testene inkluderer endimen-
sionelle simuleringer af plasmainstabiliteter såsom brandslange-, ion-cyklotron- og
ion-stråleinstabiliteten samt simuleringer af bølger såsom ion-akoustisk, ion Bern-
stein, ion-cyklotron, og fløjtebølger. Afhandlingen indeholder også en introduk-
tion til PIC-metoden og herunder en diskussion af hvordan en begrænset rumlig
opløsning kan føre til såkaldt aliasing og numerisk instabilitet. Derudover behan-
dles ion-cyklotron dæmpning samt Landau dæmpning af ion-akoustiske bølger.
Til sidst præsenteres en todimensionel simulering af brandslangeinstabiliteten og
afhandlingen afsluttes med en gennemgang af fremtidige anvendelsesmuligheder
af Vlasov-fluid koden.
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Chapter 1

Introduction

The radiative component of many astrophysical systems are in the plasma state,
i.e., it consists of a highly ionized gas in which the electrons are dissociated from
the ions. Understanding the dynamics of plasmas is therefore of prime importance
for astrophysics and a variety of methods to study plasmas have been developed
during the last century (see, e.g., Chen 2012). Collisional plasmas can be studied
by using ideal magnetohydrodynamics (MHD, see, e.g., Freidberg 2014) which
regards the plasma as a highly conducting fluid subject to the Lorentz force due
to magnetic fields. While MHD is a highly successful theory, and forms the basis
for astrophysical fluid dynamics (Pringle and King, 2007) its validity depends on
particle collisions establishing local thermodynamic equilibrium. For collisionless
plasmas, where this does not happen, a different set of tools is required. A basic
distinction for a plasma, which depends on the collisionality, is thus whether it
can be described with a fluid theory such as MHD or whether it is necessary to
use a refined theory.

In this thesis, we employ two different methods for describing fully collision-
less or weakly collisional plasmas i) the Vlasov-fluid framework (Freidberg, 1972),
which uses the Vlasov equation to describe the evolution of the phase-space distri-
bution of the ions, thereby capturing all kinetic effects associated with the ions in
a collisionless plasma and ii) the Braginskii MHD framework (Braginskii, 1965)
which is an extension to ideal MHD in which weakly collisional effects are in-
cluded as anisotropic diffusion of heat and momentum. These frameworks will be
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1. Introduction

described in more detail in Chapter 2.
The intracluster medium (ICM) of galaxy clusters, hot accretion flows in disks

around compact objects, and the solar wind have characteristic length scales that
differ by many orders of magnitude. The sphere of influence of the solar wind,
called the Heliosphere, has a length scale of ∼100 AU (Zurbuchen, 2007), the hot
accretion flow at the center of our galaxy has an estimated length scale of ∼0.04
pc (Quataert, 2003; Yuan and Narayan, 2014) and the ICM has a size of ∼Mpc
(McNamara and Nulsen, 2007). Despite the disparity in length scales, these astro-
physical systems all consist of highly ionized plasmas. Furthermore, due to their
high temperatures and low densities, the plasmas are believed to be weakly col-
lisional or collisionless, meaning that the mean-free-path characterizing particle
collisions is not small compared to the characteristic sizes of the systems. Conse-
quently, ideal MHD is not an appropriate theory for describing these systems.

Another property that these astrophysical systems have in common is that
they haveweakmagnetic fields such that the thermal pressure exceeds themagnetic
pressure. If the plasmas were collisional and could be described by ideal MHD,
the weak magnetic field strengths would therefore be predicted to be energetically
unimportant. A weak magnetic field can however be dynamically important in a
collisionless plasma. The underlying reason is that even a weak magnetic field lim-
its the motion of charged particles in the direction perpendicular to the magnetic
field while allowing them to stream freely along the magnetic field. This leads to
transport of heat and momentum which is preferentially along the magnetic field
direction.

For stratified, weakly collisional, magnetized environments, such as the ICM,
the anisotropic properties of the medium lead to stability properties which differ
markedly from the collisional case (Balbus, 2000, 2001; Quataert, 2008; Pessah and
Chakraborty, 2013). The instabilities found in Pessah and Chakraborty (2013) are
the focus of the three papers that have been published during the PhD study. A
detailed study of the stability properties of atmospheres with gradients in temper-
ature and composition was performed using the Braginskii MHD equations. This
was made possible by building upon the publicly available MHD code Athena
(Stone et al., 2008). We present a summary of the findings of Berlok and Pessah
(2015), Berlok and Pessah (2016a), and Berlok and Pessah (2016b) (hereafter Paper
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I, Paper II, and Paper III, respectively) in Chapter 3.
Besides the change in transport properties, which can lead to instabilities on a

macrophysical scale, collisionless plasmas with a weak magnetic field can also be
subject to microscale instabilities. These microscale instabilities arise due to the
way charged particles respond to changes in magnetic field strength. Because the
magnetic moment is an adiabatic invariant, slow changes inmagnetic field strength
go hand-in-hand with the development of anisotropic velocity space distributions.
When the plasma is collisionless this almost inevitably leads to velocity space in-
stabilities.

We review the linear theory for some of the prominent velocity space instabil-
ities in Chapter 7 and note that these instabilities are not well described within the
framework of Braginskii MHD (Schekochihin et al., 2005). In order to study the
non-linear evolution of these instabilities computer simulations using a kinetic
code are thus required. Kinetic codes that use the particle-in-cell (PIC) method
can be roughly divided into two classes: Full PIC codes (Hockney and Eastwood,
1988; Birdsall and Langdon, 1991) which treat both ions and electrons as particles
and hybrid PIC codes (Byers et al., 1978; Harned, 1982; Winske et al., 2003) which
treat the ions as particles and the electrons as a fluid by solving the Vlasov-fluid
equations.1

While there are presently a number of MHD codes (e.g. Athena by Stone et
al. 2008 and Pluto by Mignone et al. 2007) and full PIC codes (e.g. TRISTAN-
MP by Spitkovsky 2005 and the Photon-Plasma code by Haugbølle, Frederiksen,
andNordlund 2013) which benefit the astrophysical community by being publicly
available, it seems that there is not yet a corresponding code that solves the Vlasov-
fluid equations. To the best of our knowledge, the hybrid PIC codes used in the
astrophysics and space plasma physics communities are CAMELIA (Matthews,
1994), DHybrid (Gargaté et al., 2007), the code by Brecht and Ledvina (2007), the
code by Holmström (2010), AIKEF (Müller et al., 2011), Pegasus (Kunz, Stone,
and Bai, 2014), CHIEF (Muñoz et al., 2016) and AMITIS (Fatemi et al., 2017).

As far as we are aware, none of the codes listed above are publicly available
and we have therefore resorted to developing a new Vlasov-fluid code in order to

1A proper introduction to the Vlasov-fluid equations is given in Chapter 2 and an introduction
to the particle-in-cell method is given in Chapter 8.

3
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be able to study the microscale physics of collisionless astrophysical systems. The
development of the Vlasov-fluid code is the topic of Chapters 8-12 of the thesis.

The rest of this chapter is organized as follows: in Section 1.1 we introduce key
concepts from plasma physics which will be used throughout the thesis. In Section
1.2, 1.3, and 1.4 we give a brief introduction to the collisionless plasma physics of
the solar wind, hot accretion flows and the ICM in galaxy clusters. These intro-
ductions are by necessity highly simplified and incomplete but are nevertheless
provided in order to give context to the tools that we have developed for study-
ing collisionless plasmas. We finish the chapter by providing an outline for the
remainder of the thesis in Section 1.5.

1.1 Plasma astrophysics

In order to quantitatively understand when collisions are important (and when
they are not) we summarize some concepts from plasma physics (see, e.g., Hazel-
tine andWaelbroeck 2004). This also serves to introduce the notation used through-
out the thesis. We note that we work exclusively in SI units.

We consider a completely ionized plasma which consists of electrons and ions.
We introduce the electron plasma frequency, ωp, given by

ω2
p = nee

2

ε0me
, (1.1)

where ne is the electron number density, e is the fundamental charge such that
−e is the electron charge,me is the electron mass and ε0 is the vacuum permittiv-
ity. The plasma frequency gives the inverse time scale for quasi-neutrality to be
achieved after a perturbation of the electron charge density.

We can use the plasma frequency to define two length scales of interest. First
we define the electron skin depth, also known as the electron inertial length, as

de = c

ωp
, (1.2)

where c is the speed of light. The electron skin depth is the length scale on which
an electromagnetic wave with frequency, ω < ωp, is attenuated as it tries to pene-
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trate into the plasma. Secondly, we define the electron thermal velocity as

ve,t =
√
Te
me

, (1.3)

where Te is the electron temperature2 in order to define the electron Debye length
as

λD = ve,t
ωp

. (1.4)

Deviations from neutrality are screened on distances larger than the Debye length
and the plasma is said to be quasi-neutral. This terminology refers to the fact that
the particles comprising the plasma are charged and that deviations fromneutrality
do occur at scales below the Debye length.

At amicroscopic level, a plasma consists of a myriad of charged particles which
all generate magnetic and electric fields while being subject to the Lorentz force
arising due to the fields of all the other particles. The Lorentz force acting on
particle species s is given by

msas = es(E + v ×B) , (1.5)

where as is the acceleration of a particle of species s with mass ms and charge
es. The acceleration arises due to the electric field, E and the magnetic field,
B. These fields are in general functions of time and space, i.e., E(x, y, z, t) and
B(x, y, z, t) where t denotes the time and x, y and z are spatial coordinates in a
Cartesian coordinate system with unit vectors ex, ey, and ez. Some insight can
however be gained by considering the following, much simpler, scenario. For a
single particle in a constant magnetic field of strengthB, the Lorenz force predicts
simple gyromotion with a frequency

Ωs = esB

ms
, (1.6)

which is known as the cyclotron frequency (or gyrofrequency). The associated
2We measure temperature in units of energy by setting Boltzmann’s constant to unity, kB = 1.
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thermal gyroradius is given by

rs = vs,t
Ωs

. (1.7)

The ratio of the thermal gyroradius to the characteristic length scale of the sys-
tem, L, is called the magnetization parameter and is given by (Hazeltine andWael-
broeck, 2004)

δs = rs
L
, (1.8)

such that plasmas with δs � 1 (δs & 1) are said to be magnetized (unmagnetized).
When additional forces enter the picture (due to an electric field, a gradient in

the magnetic field strength, curvature of the magnetic field lines, gravity, density
and/or temperature gradients, etc.) these can often be modeled as gyromotion
around a guiding center that drifts due to the additional forces (see, e.g., Chen
2012). A lot of progress can thus be made by treating a plasma as a collection
of particles with fast gyration around a guiding center. Averaging out the fast
gyration yields the framework of gyrokinetics (Howes et al., 2006).

Particles can also collide, although the plasmas we will consider are too dilute
to undergo collisions in the literal sense of the word. Instead, collisions for a
weakly coupled plasma are really events of close approach with another particle
that lead to a small change in the direction of the particle. A Coulomb ’collision’
is then defined to be a collection of such events which change the direction of the
particle by 90 degrees. We define the collision frequency for species s as (Hazeltine
and Waelbroeck, 2004)

νs =
∑
s′

νss′ , (1.9)

where the sum extends over all species s′ and the Coulomb collision frequency
between species s and s′ is approximated by (Braginskii, 1965)

νss′ = 4
√

2π
3

e2
se

2
s′

(4πε0)2
m

1/2
ss′

ms
ln Λss′

ns′

T 3/2 . (1.10)
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Here ln Λss′ is the Coulomb logarithm and

mss′ = msms′

ms +ms′
, (1.11)

is the reduced mass. We observe from Equation 1.10 that the collision frequency
is proportional to the density but decreases sharply with temperature. Dilute, hot
plasmas will thus have low collision frequencies.

We can use the collision frequency to define a mean-free-path for collisions
given by

λs,mfp = vs,t
νs

, (1.12)

in order to obtain a quantitative measure for what it means for a plasma to be
collisionless. If the mean-free-path of collisions, λs,mfp, is much smaller than the
characteristic size of the system, L, then the plasma is said to be collisional. In
the opposite limit, λs,mfp & L, the plasma is said to be collisionless. We define a
collisionality parameter

Kns = λs,mfp
L

, (1.13)

called the Knudsen number, such that plasmas with Kns � 1 are collisional and
plasmas with Kns & 1 are effectively collisionless.

In analogy with the electron inertial length, the ion inertial length is given by

di = c

ωpi
, (1.14)

where the ion plasma frequency is

ω2
pi = e2ni

ε0mi
. (1.15)

We will exclusively consider non-relativistic plasma models in this thesis. This
limit is formally found by setting the speed of light to infinity. Equation 1.2 and
1.14 seem to indicate that the inertial lengths go to infinity in this limit. This is,
of course, not the case. Using that the speed of light is given by c = 1/√ε0µ0,
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where µ0 is the vacuum permeability, it is straightforward to show that the inertial
length of species s is given by

ds =
√

ms

µ0e2
sns

. (1.16)

We will often consider a pure hydrogen plasma consisting of electrons and a single
ion species with mass,mi, charge, e, and number density, ni, for which the Alfvén
velocity is given by3

v2
a = B2

µ0nimi
. (1.18)

The ion inertial length can in this case be written in terms of the Alfvén velocity
and the ion cyclotron frequency as

di = va
Ωi

. (1.19)

The ion inertial length is the scale at which the ion motion decouples from the
electrons. It is also the scale at which the ion velocity space microscale instabilities
grow (see Chapters 7 and 12). Notice that while both the Alfvén speed (Equation
1.18) and the ion cyclotron frequency (Equation 1.6) depend on the magnetic field
strength, the ion inertial length (Equation 1.19) does not.

We have already mentioned that the solar wind, hot accretion flows and the
ICM can have thermal energies that exceed the magnetic energies. This ratio de-
fines the plasma-β, given by

βs = 2nsTsµ0
B2 , (1.20)

3In general, we define the Alfvén velocity, va, as

v2
a = B2

µ0%
, (1.17)

where % =
∑

s
msns is the mass density of the plasma.
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for species s. The total β is then defined as4

β =
∑
s

βs . (1.22)

From Equation 1.7, 1.16 and 1.20, we observe that the gyroradius and the inertial
length differ by a factor of

√
βs/2 as rs =

√
βs/2 ds. For high β plasmas the

inertial lengths are thus shorter than the gyroradii.
The final parameter, that we introduce, is the plasma coupling parameter5, Γ.

This parameter is given by the ratio of the characteristic electrostatic potential
energy to the characteristic kinetic energy per particle (Piel, 2010). The kinetic
energy is given by Ekin = msv

2
s, t/2 = Ts/2 and, assuming a mean inter-particle

distance of n−1/3
s , the potential energy is given by

Epot = e2
sn

1/3
s

4πε0
. (1.23)

The plasma coupling parameter is thus given by

Γ = Epot
Ekin

= 2e2
sn

1/3
s

4πε0Ts
∼ n

1/3
s

Ts
, (1.24)

When Γ� 1 the kinetic energy of the plasma greatly exceeds the potential energy
associated with the Coulomb potential. A particle does not continuously feel the
influence of the other particles in this limit and the plasma is said to be weakly
coupled. The Vlasov equation, introduced in Chapter 2, is only valid6 when the

4For a fluid description the total β is given by

β = 2 c
2
s

v2
a
, (1.21)

where v2
a is given by Equation 1.17, the sound speed is cs =

√
p/% and p is the fluid pressure. This

agrees with Equation 1.22 as p =
∑

s
ps.

5Not to be confused with the plasma parameter, Λ = 4πλ3
D, or the Debye number,ND = Λ/3,

which is the number of particles in a Debye sphere. These parameters are however related such that
Λ� 1 corresponds to Γ� 1 and vice versa.

6The derivation of the Vlasov equation truncates the BBGKY hierarchy by assuming that the
one-particle distribution function does not depend on two-particle correlations and this assumption
is only valid if the interactions are short-ranged, i.e., if the plasma is weakly coupled. See e.g.
Bartelmann (2013) and Hazeltine and Waelbroeck (2004).
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plasma is weakly coupled. Most astrophysical plasmas and all of the plasmas con-
sidered in this thesis have Γ � 1. Examples of strongly coupled plasmas include
dusty plasmas and laboratory plasmas that are not quasi-neutral (Piel, 2010).

The various plasma parameters introduced above can be estimated for the as-
trophysical systems of interest. The information required is the plasma tempera-
ture, density and the magnetic field strength. In order to estimate the magnetiza-
tion, δ, and the Knudsen number, Kn, we also need an estimate for the character-
istic length scale of the system. We have found rough estimates for T , n, B and L
in the literature, i.e., in Borovsky and Gary (2011) for the solar wind, in Quataert
(2003) for Sgr A∗ and in Carilli and Taylor (2002) and Vikhlinin et al. (2006) for
the ICM7. A summary of the resulting parameters are presented in Table 1.1. We
observe that the solar wind is the least collisional (Kn ≈ 3) followed by the accre-
tion flow in Sgr A∗ with Kn ≈ 0.6. The ICM has Kn ≈ 0.01 which is small but
collisions might have a role to play here, i.e., the ICM is weakly collisional. We
also note that all three astrophysical systems are magnetized with δ � 1 and that
they are weakly coupled Γ � 1 (or equivalently Λ, ND � 1). The plasma β is
greater than one for hot accretion flows and the ICM. This implies that these sys-
tems are very likely to be subject to velocity-space microscale instabilities. While
the Solar wind has β ≈ 0.4with the values used here, the solar wind is also thought
to be subject to microscale instabilities. We discuss this in the following.

1.2 The solar wind

The fast solar wind consists of a stream of charged particles traveling at a veloc-
ity of ∼ 400 − 800 km/s (Schwenn, 2001). The existence of this low density (5
cm−3) and high temperature (10 eV) plasma was deduced by L. Biermann who
interpreted observations of ion tails in comets as being due to acceleration by a
"corpuscular radiation" from the sun, i.e., a solar wind (Biermann, 1951; Bier-
mann, 1957). Using ideal MHD the solar wind was predicted by (Parker, 1958) to

7We note that we have assumed Ti = Te for simplicity and that the values used here are merely
meant to illustrate the difference in the magnitudes of the various parameters.
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The solar wind

Solar wind at 1 AU Sgr A∗ ICM
T (eV) 10 2× 103 5× 103

n (m−3) 5× 106 108 104

B (T) 10−8 10−7 10−10

L (m) 1011 1015 3× 1021

ωp (s−1) 105 6× 105 6× 103

vt,i (m/s) 4× 104 6× 105 106

va (m/s) 105 2× 105 2× 104

Ωi (s−1) 1 10 0.01
νii (s−1) 10−7 9× 10−10 3× 10−14

λD (m) 10 50 7× 103

ri (m) 5× 104 6× 104 108

λmfp,i (m) 4× 1011 7× 1014 3× 1019

β 0.4 20 4× 103

δi 3× 10−7 5× 10−11 3× 10−14

Kn 3 0.6 0.01
Γ 5× 10−8 7× 10−10 10−11

Table 1.1: Characteristic temperatures, number densities and magnetic field
strengths for the solar wind, Sgr A∗ and the ICM (Quataert, 2003; Vikhlinin et
al., 2006; Borovsky and Gary, 2011). The characteristic lengths are chosen to be
1 AU, 0.04 pc and 100 kpc, respectively.

have an associated magnetic field of the form (see, e.g., Fitzpatrick 2014)

B = B0

[(
r0
r

)2
er −

Ω�r0
uSW

r0
r

sin θeφ
]
. (1.25)

Here uSW is the solar wind speed, Ω� is the solar rotation rate and B0 is the
magnetic field strength at the reference point, r = r0 and θ = 0.

The dipolar magnetic field of the Earth impedes the solar wind resulting in a
bow shock and a distortion of the Earth’s magnetic field, giving it an elongated
shape (Baumjohann and Treumann, 1996). Some of the solar wind particles are
reflected at the bow shock, forming the foreshock region. This region has particle
populations with different drift velocities which can give rise to the ion beam
instability that we discuss in Chapter 12 (Treumann and Baumjohann, 1997).

We can use the magnetic field given by Equation 1.25 to estimate how an ini-
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tially isotropic velocity space distribution will change as a function of radius (Mat-
teini et al., 2006). If we completely ignore collisions then it is possible to derive the
CGL-equations (Chew, Goldberger, and Low, 1956) given by (see, e.g., Baumjo-
hann and Treumann 1996 or Berlok 2014 for a discussion of these equations by
the present author)

d

dt

(
p⊥
nsB

)
= 0 , (1.26)

d

dt

(
p‖B

2

n3
s

)
= 0 , (1.27)

where the parallel and perpendicular pressures are related to the parallel and per-
pendicular temperatures by the equation of state for an ideal gas, i.e., p‖ = nsT‖

and p⊥ = nsT⊥. The CGL-equations describe how a changing magnetic field
and/or density will lead to changes in the parallel and perpendicular pressures
(temperatures). The derivation of these equations assumes that the pressure ten-
sor, P, can be written as (Baumjohann and Treumann, 1996)

P = p⊥1 + (p‖ − p⊥)bb , (1.28)

where 1 is the identity matrix and b is a unit vector in the direction of the local
magnetic field.

From mass continuity in the solar wind we can assume that nsuSWr
2 is con-

stant such that the number density of the plasma will scale as ns ∝ r−2. If we
ignore the azimuthal component of the magnetic field (Equation 1.25), the mag-
netic field strength will scale as B ∝ r−2. The CGL equations (Equations 1.26
and 1.27) then predict that (Matteini et al., 2006)

T‖ ∝ n2
s/B

2 ∝ const. , (1.29)

T⊥ ∝ B ∝ r−2 , (1.30)

such that the ratio of parallel to perpendicular temperature will vary as T‖/T⊥ ∝
r2. In Chapters 7 and 12 we will see that temperature anisotropies can lead to
microscale instabilities that are driven by the anisotropy in the velocity space dis-
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Hot accretion flows

tribution. In particular, the firehose instability is expected to go unstable for a
temperature anisotropy with T‖ > T⊥. For the solar wind, Marsch, Zhao, and Tu
(2006) and Bale et al. (2009) have presented data from observations that show that
the velocity space distribution is confined to the region of stability for the mirror
and firehose instabilities. This indicates that the microscale instabilities saturate
by driving the temperature anisotropy back to marginal stability. A similar behav-
ior is also observed in simulations of microscale instabilities. For instance, studies
using "expanding box" Vlasov-fluid simulations, which imitate the solar wind ex-
pansion by continuously driving the temperature anisotropy have been performed
by Matteini et al. (2006, 2012) and Hellinger et al. (2015). Similarly, Sironi and
Narayan (2015) employed a ’compressing box’ to study compressive motions in
hot accretion flows. We will use these observations as motivation for limiting the
temperature anisotropy in our implementation of Braginskii MHD (Chapter 2).

In the preceding discussion we considered a stationary description of the so-
lar wind. In reality, the solar wind is a dynamic system which should be under-
stood through its coupling to the sun and its internal dynamics (see, e.g., Zur-
buchen 2007). More information about plasma physics in the solar system, i.e.,
space plasma physics, can be found in, e.g., Baumjohann and Treumann (1996)
and Treumann and Baumjohann (1997).

1.3 Hot accretion flows

Radiatively inefficient accretion flows (RIAFs) are believed to take place in ac-
cretion disks around compact objects. These hot accretion flows accrete at a rate
much smaller than the Bondi accretion rate and have been reviewed by Quataert
(2003) and Yuan and Narayan (2014). The prime candidate for a RIAF is the radio
(and X-ray) source at the center of our galaxy, Sagittarius (Sgr) A∗. As heat escapes
slowly, this makes the accretion disk very hot and gives rise to a geometrically
thick and optically thin disk. The estimated temperature and density at the Bondi
radius of the black hole candidate are shown in Table 1.1. The estimated value of
the Knudsen number isKn = 0.6, i.e., the plasma is collisionless and the time scale
for Coulomb collisions is much longer than the time scale for accretion. This also
means that the timescale for thermal equilibration between ions and electrons is
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long compared to the accretion time scale. As electrons cool more efficiently than
ions (by emitting radiation) this could give rise to a two-temperature flow with
the electron temperature being a fraction of the ion temperature. Counteracting
the cooling, however, the ions and electrons are also thought to be heated by other
mechanisms such as turbulence andmagnetic reconnection (Yamada, Kulsrud, and
Ji, 2010). Understanding the relative efficiency of heating of electrons and ions is
therefore important for determining whether the plasma has a two-temperature
structure. Studies of electron heating have been performed by, e.g., Sharma et al.
(2007) and Sironi and Narayan (2015). We note that the thermodynamics of the
electrons is especially interesting because of its impact on the emitted radiation.

Themagneto-rotational instability (MRI, Velikhov 1959; Chandrasekhar 1960;
Balbus and Hawley 1991, see also Balbus and Hawley 1998 for a review) is con-
sidered a promising mechanism for transport of angular momentum leading to
accretion in astrophysical disks. This instability was originally found using ideal
MHD but has since then been extended to the collisionless case using kinetic
MHD (Quataert, Dorland, and Hammett, 2002). A study of the transition from
collisional MRI to collisionless MRI was presented by Sharma, Hammett, and
Quataert (2003) using a Krook operator for the collisions. A treatment of the
problem using an anisotropic viscosity tensor can be found in Balbus (2004).
These initial analytical studies found that the growth rate of the collisionless MRI
can exceed the growth rate of the collisional MRI. Ferraro (2007) also included
a Braginskii ion gyroviscosity and found that this can stabilize even long wave-
length modes of the MRI. The complete dispersion relation for a collisionless
plasma using Vlasov theory has more recently been obtained by Heinemann and
Quataert (2014) and solved in the hot electron limit in Quataert, Heinemann, and
Spitkovsky (2015).

Shearing box simulations of the MRI have been performed by using the CGL-
equations with a Landau fluid closure (Sharma et al., 2006) and stratified shear-
ing box simulations have been performed by Hirabayashi and Hoshino (2017).
Particle-in-cell simulations of the MRI with kinetic ions and electrons have also
been presented by Riquelme et al. (2012) and Hoshino (2013, 2015). More re-
cently, a shearing box simulation of the MRI using the Vlasov-fluid equations was
presented by Kunz, Stone, and Quataert (2016).
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The intracluster medium

We have highlighted that the application of ideal MHD to hot accretion flows
is suspect due to the low degree of collisionality. This is, however, not the only rea-
son. Due to the proximity with a super massive black hole with mass ∼ 106M�,
general relativity should also be taken into account. General relativistic MHD
(GRMHD) simulations of hot accretion flows have been performed for some time
(see, e.g., Gammie, McKinney, and Toth 2003 and references therein). More re-
cently, GRMHD simulations have directly incorporated the effects of low colli-
sionality as diffusion terms which model anisotropic heat flow and momentum
(Ressler et al., 2015; Foucart et al., 2016; Ressler et al., 2016; Chandra, Foucart,
and Gammie, 2017). This general relativistic version of Braginskii MHD has the
same limitation as non-relativistic Braginskii MHD in that it does not describe
velocity-space instabilities from first principles (see also Chapter 2).

1.4 The intracluster medium

The intracluster medium (ICM) is a hot, dilute plasma which permeates the space
between galaxies in galaxy clusters. Typical galaxy clustermasses are 1014−1015M�

ofwhich the primary component is darkmatterwith the ICMcontributing roughly
10% and the galaxies themselves only contributing around 1% of the total mass
(Andreon, 2010). Galaxy cluster sizes are of order Mpc (Vikhlinin et al., 2006)
and galaxy clusters are the largest gravitationally bound objects in the Universe
both by volume and mass. While we will only concern ourselves with the plasma
physics of the ICM, we note that galaxy clusters are also useful astrophysical sys-
tems in cosmology (Voit, 2005; Mantz et al., 2014).

The ICM is a diffuse X-ray source, the emission mechanism being thermal
Bremsstrahlung (Sarazin, 1986). Since this emissionmechanism is well understood
the underlying temperature and density of the plasma can be deduced from X-
ray observations8. Such observations reveal that the ICM is often approximately
spherically symmetric and in hydrostatic equilibrium (McNamara and Nulsen,
2007). Assuming that the gas is in hydrostatic equilibrium can be used to estimate
the total cluster mass. Although such an estimate is limited by this assumption,
general consensus is foundwith estimates fromweak lensing or velocity dispersion

8Bearing in mind the caveat outlined in Chapter 3.
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of galaxies (McNamara and Nulsen, 2007).
The magnetic field strength of the ICM can be measured using Faraday rota-

tion, synchrotron emission or inverse Compton scattering and values are found
to be of order9 µG (Carilli and Taylor, 2002). A radial profile for the magnetic
field in the Coma cluster has been estimated by Bonafede et al. (2010) and is used
to estimate β in Chapter 3. As observed in Table 1.1, the value of β can be quite
high. This implies that the ICM will be subject to microscale instabilities (see,
e.g., Schekochihin et al. 2005).

A proper description of the physics of the ICM contains a lot of elements and
is not within the scope of this thesis. We refer the interested reader to Markevitch
and Vikhlinin (2007) for a review of shocks and cold fronts; to McNamara and
Nulsen (2007) for a review of the role of heating by active galactic nuclei (AGN),
radio lobes and the absence of a cooling flow; and to Voit (2005) for a general
overview of galaxy clusters which includes how they form and the role of dark
matter and cosmology on their evolution.

It is computationally demanding to perform global simulations of the ICM
(see however, e.g., Parrish, Quataert, and Sharma 2009 for an example) but impor-
tant insight can also be gained by studying simplified models that retain the most
relevant physics. In this thesis we consider an idealized model, i.e., a plane-parallel
atmosphere which is weakly collisional (Kn = 0.01) and stratified in temperature
and composition. The motivation for considering this model is that stratification
in temperature is found in observations (Vikhlinin et al., 2006) and that stratifi-
cation in composition is found in theoretical sedimentation models (see Chapter
3).

A weakly collisional, magnetized atmosphere as outlined above has stability
properties that differ from those expected from the Schwarzschild criterion which
governs the stability of stars (Schwarzschild, 1958). The new stability properties
arise as a consequence of anisotropic transport of heat, in which the heat flow is
directed along the local magnetic field. This anisotropic transport has been mod-
eled by using Braginskii MHD (Braginskii, 1965) in which the heat flow vector,

9Where 1 µG = 10−4 T.
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Q, is given by

Q = −χ‖bb · ∇T, (1.31)

where T is the temperature of the plasma and χ‖ is the heat conductivity (Spitzer,
1962).

Two widely studied instabilities that can arise due to anisotropic transport of
heat given by Equation 1.31, are the magneto-thermal instability (MTI, Balbus
2000, 2001) and the heat-flux-driven buoyancy instability (HBI, Quataert 2008).
The MTI (HBI) can be active for stratified atmospheres in which the temperature
decreases (increases) with height and is maximally unstable when the magnetic
field is horizontal (vertical) with respect to gravity. These instabilities have been
studied by, e.g., Parrish and Stone (2005), Parrish, Stone, and Lemaster (2008),
Kunz (2011), Kunz et al. (2012), and Parrish et al. (2012a,b) and a review is given
by Balbus and Potter (2016).

Generalizations of the MTI and the HBI to a setting where composition is
stratified are discussed in Chapter 3 as well as Pessah and Chakraborty (2013),
Paper I, Paper II, Paper III and Sadhukhan, Gupta, and Chakraborty (2017).

1.5 Outline of the thesis

The outline of the remainder of the thesis is as follows. In the next chapter we
introduce three frameworks used to model weakly collisional and collisionless
plasmas. We present the Vlasov-fluid equations (Freidberg, 1972; Cerfon and Frei-
dberg, 2011) which assume that the ions are completely collisionless and that the
electrons are an inertialess fluid in Section 2.1. We also introduce Hall MHD
which can be regarded to be the cold ion limit of the Vlasov-fluid theory in Sec-
tion 2.2 and Braginskii MHD which assumes that the plasma is weakly collisional
in Section 2.3.

Part two of the thesis, i.e., Chapter 3, provides a summary of Paper I, Paper
II, Paper III where we use the Braginskii MHD framework to study the stabil-
ity properties of the ICM when both temperature and composition gradients are
present.

17



1. Introduction

Part three of the thesis, i.e., Chapters 4-7, describes the linear theory for a
magnetized plasma. We consider some of the linear waves that arise in Hall MHD
inChapter 4 and derive the linear dispersion relation for the Vlasov-fluid equations
in Chapter 5. This dispersion relation depends on the conductivity tensor of the
ions which we present in Chapter 6. Solutions of the dispersion relation are then
presented in Chapter 7.

Part four of the thesis, i.e., Chapters 8-12, describes the development of a new
Vlasov-fluid code which uses the particle-in-cell (PIC) method. We provide an
introduction to this method in Chapter 8 followed by a discussion of staggering
in time and space in Chapter 9. Methods for initializing particle positions and
velocities are described in Chapter 10. A discussion of aliasing in PIC codes and
the finite grid instability is presented in Chapter 11 along with its relation to Lan-
dau damping. We present a variety of computer simulations of plasma waves and
instabilities in order to illustrate the physics and show that the code is working as
intended in Chapter 12.

Finally, Chapter 13 provides a discussion of our results and future prospects.
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Chapter 2

Plasma frameworks

This chapter provides a brief introduction to the Vlasov-fluid equations (Freid-
berg, 1972), Hall MHD and Braginskii MHD (Braginskii, 1965). Braginskii MHD
is employed in our study of the ICM in Chapter 3. Vlasov-fluid theory forms the
basis for the new code presented in Chapters 8-12 and the linear theory presented
in Chapters 5-7. Some of the waves present in Hall MHD, which can be consid-
ered to be the cold ion limit of the Vlasov-fluid equations, are derived in Chapter 4
as they have been found to be useful for testing purposes of the Vlasov-fluid code.

2.1 Vlasov-fluid equations

We introduce the Vlasov-fluid model, also often referred to as a hybrid model
as it is a hybrid between a fully kinetic model and a fluid description. This sys-
tem of equations treats the ions kinetically and the electrons as an inertialess, i.e.,
massless, fluid. In this model, the evolution of the ensemble-averaged phase space
density of the ions, fs(x, v, t), is given by (Hazeltine and Waelbroeck, 2004)

dfs
dt

= 0 , (2.1)

where

d

dt
= ∂

∂t
+ v · ∇+ as ·

∂

∂v
, (2.2)
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is the convective derivative in 6-dimensional phase space and the acceleration as
is given in Equation 1.5. Equation 2.1 highlights that the phase space volume is
conserved when there are no collisions.

We can write out Equations 1.5, 2.1 and 2.2 in order to obtain the Vlasov
equation

∂fs
∂t

+ v · ∇fs + es
ms

(E + v ×B) · ∂fs
∂v

= 0 , (2.3)

which describes the evolution of the phase space distribution function in a 6-
dimensional phase space consisting of three spatial and three velocity dimensions.
In this equation fs(x, v, t) is the smooth one-particle phase space distribution
function for an ion species s which is subject to the acceleration felt by an ion
with charge es and massms in the presence of a magnetic field,B, and an electric
field, E.

Fluid quantities such as ion number density, ns, and bulk velocity, us, are
found by taking moments, i.e., performing integrals over velocity space, of the
distribution function. The phase space distribution function is normalized such
that

ns =
∫
dv3fs , (2.4)

and

us = 1
ns

∫
dv3vfs . (2.5)

The ion charge density is given by ρs = esns and the ion current density is given
by Js = nsesus.

The total ion charge density and current1 are then given by

ρi =
∑
s

ρs =
∑
s

esns , (2.6)

Ji =
∑
s

Js =
∑
s

nsesus , (2.7)

1Current densities will often simply be referred to as currents.
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Vlasov-fluid equations

where the sum extends over all ion species.
An essential ingredient in the Vlasov-fluid framework is the assumption of

charge neutrality. Charge neutrality implies that the electron charge density is
given by ρe = −ene = −ρi. The relevant frequency for charge separation is the
electron plasma frequency. The assumption of quasi-neutrality thus effectively
corresponds to ωp being infinite, i.e., as the electrons are massless they will imme-
diately respond to any deviation from charge neutrality and erase it.

The equations governing the evolution of the magnetic and electric fields are
Faraday’s law

∂B

∂t
= −∇×E, (2.8)

and the pre-Maxwell, i.e., non-relativistic, Ampére’s law

∇×B = µ0J . (2.9)

The latter equation gives the total current as the curl of the magnetic field. This
means that electromagnetic waves propagating at the speed of light are not in-
cluded in the model. In simulations, this has the advantage that we do not have
to adhere to the severe limits on the timestep that these fast-moving waves would
impose.

The total current, J , is given by the sum of ion and electron currents

J = Je +
∑
s

Js, (2.10)

and the relation between the electron fluid velocity and the electron current is
Je = −eneue.

For an electrostatic PIC code, the electric field is found from

E = −∇Φ , (2.11)

where Φ is the potential determined from the solution to Poisson’s equation

∇2Φ = −ρ/ε0 , (2.12)
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and ρ is the total charge density. In the Vlasov-fluid code ρ = 0 and the electric
field is instead found from the electron momentum equation. This equation can
be derived by taking the 1st moment of the Vlasov equation for the electrons. One
finds (see, e.g., page 13 in Berlok 2014 or most books on plasma physics/MHD)

mene
due
dt

= −∇pe − nee(E + ue ×B) , (2.13)

where it was assumed that the electron pressure is scalar2.
Invoking the Vlasov-fluid framework assumption that the electron mass is

zero, i.e.,me = 0 removes the time dependence of the electron momentum equa-
tion. This enables us to write an expression for the electric field

E = −∇pe
ene
− ue ×B . (2.14)

Equation 2.14 is also known as the generalized Ohm’s law.
For future reference we note that we can also write Ohm’s law as

E = ∇pe
ρe
− Je ×B

ρe
, (2.15)

where the electron current

Je = J −
∑
s

Js, (2.16)

is found by subtracting the sum of the ion currents from the total current.
The magnetic field is tied to the electron fluid in Vlasov-fluid theory. We can

show this by combining Ohm’s law (Equation 2.14) and Faraday’s law (Equation
2.8)

∂B

∂t
= ∇×

(∇pe
ene

+ ue ×B
)

= ∇× (ue ×B) , (2.17)

2The pressure tensor is given by the 2nd moment of the distribution function. We instead trun-
cate the scheme by assuming an equation of state for the electrons, i.e., pe = pe(ne, Te).
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yielding a, from MHD familiar-looking, induction equation3. The well-known
proof showing that the magnetic field is moving with the fluid in MHD (see, e.g.,
Hazeltine and Waelbroeck 2004) can be used to see that the magnetic field is tied
to the electron fluid in the Vlasov-fluid model.

The main computational advantage of the Vlasov-fluid framework is that the
electron plasma frequency, ωp, and the Debye length, λD, do not enter in the
model. This provides a significant simplification both analytically and computa-
tionally. The Vlasov-fluid approach significantly eases the computational burden
compared to simulations where both the ions and electrons are treated kinetically.
For particle in cell (PIC) methods this alleviation of the computational burden
comes from not having to resolve the electron time and length scales which are a
factor ofmi/me shorter. The cost of this simplification is that electron scale phe-
nomena are not included in the model. The Vlasov-fluid model will, for instance,
not be useful for studying electron Landau damping, electron scale magnetic re-
connection and acceleration of electrons in various astrophysical collisionless sys-
tems.

2.2 Hall MHD

The key difference between Hall MHD and the Vlasov-fluid approach is in the
way the ions are treated. For Hall MHD the ions are treated as a fluid, i.e., it is the
0th and first order moments of the Vlasov equation that are evolved. We consider
for simplicity a fully ionized hydrogen plasma4. The mass continuity equation is
then

∂%

∂t
+∇ · (%ui) = 0, (2.19)

3Note that

∇× ∇pe

ene
= 0 , (2.18)

for a barotropic electron fluid.
4The derivation can be generalized by defining the fluid velocity to be a mass weighted sum.
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where % is the mass density of ions, and the ion momentum equation is

%
dui
dt

= −∇pi + nie(E + ui ×B) . (2.20)

The electric field in Equation 2.20 can be found from the generalized Ohm’s law
(Equation 2.14). This expression depends on the electron fluid velocity,ue, but we
can express the electron velocity in terms of the total current and the ion velocity,
ui, by using the definition of the total current (Equation 2.10). We find

ue = − Je
ene

= − J

ene
+ Ji
ene

= − J

ene
+ ui , (2.21)

which upon substitution into Equation 2.14 yields Ohm’s law in the form

E = −∇pe
ene

+ J

ene
×B − ui ×B . (2.22)

The first term in Equation 2.22 is known as the ambipolar electric field, the second
term is the Hall electric field and the last term is the electric field also found in
ideal MHD. Note that last term contributing to the electric field is zero in a frame
moving with the plasma (Parker, 2007).

Combining Equation 2.20 and Equation 2.22 we obtain

%
dui
dt

= −∇(pi + pe) + J ×B , (2.23)

where charge neutrality, ni = ne, was assumed. The ion momentum equation can
then be written as

%
dui
dt

= −∇p+ J ×B , (2.24)

if we define the total (thermal) pressure as p = pe + pi.
Summarizing, the equations of Hall MHD are the ion mass continuity equa-

tion (Equation 2.19), the ion momentum equation (Equation 2.24) with the cur-
rent given by Ampére’s law (Equation 2.9) and Faraday’s law (Equation 2.8) with
the electric field given by Ohm’s law (Equation 2.22).
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2.3 Braginskii MHD

Braginskii MHD is a fluid model which includes diffusion terms in order to model
transport of heat andmomentum in aweakly collisional plasma (Braginskii, 1965).

A derivation of Braginskii MHD can be found in Fitzpatrick (2014) and a
derivation of the equations of Braginskii MHD for a binary mixture of hydrogen
and helium has previously been presented by the present author in Berlok (2014).
The latter set of equations was used by Pessah and Chakraborty (2013) and a dis-
cussion of their derivation can also be found in Appendix B in Paper I. We do not
re-derive these results here but simply note that the basic idea is that collisions
can be included by adding a collisional term on the right hand side of the Vlasov
equation (Equation 2.3), yielding the Boltzmann equation.

The equations of Braginskii MHD are found to be the mass continuity equa-
tion

∂%

∂t
+∇ · (%u) = 0 , (2.25)

the momentum equation

∂(%u)
∂t

+∇ ·
(
%uu+ pT1− BB

µ0

)
= −∇ ·Π + %g , (2.26)

the induction equation

∂B

∂t
= ∇× (u×B) , (2.27)

and the energy equation

∂E

∂t
+∇ ·

[
(E + pT)u− B(B · u)

µ0

]
= −∇ ·Q−∇ · (Π · u) + %g · u .

(2.28)

In these equations u is the fluid velocity, pT = p + B2/2µ0 is the total pressure
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(gas plus magnetic) and

E = 1
2%u

2 + B2

2µ0
+ p

γ − 1 , (2.29)

is the total energy density. We take γ = 5/3 and

p = %T

mHµ
, (2.30)

where mH is the proton mass and µ is the mean molecular weight. Gravity is
included in the momentum and energy equations where the gravitational acceler-
ation is given by g = −gez, g being a constant.

For a hydrogen-helium plasma we amend these equations with a continuity
equation for the helium mass

∂(c%)
∂t

+∇ · (c%u) = 0 , (2.31)

where c is the helium mass concentration

c ≡ %He
%H + %He

= %He
%

, (2.32)

which is related to the mean molecular weight by

µ = 4
8− 5c . (2.33)

This generalizes the Braginskii MHD equations to describe systems where the
composition is not constant (Pessah and Chakraborty, 2013).

The anisotropic heat flux,Q, present in the energy equation, is given by

Q = −χ‖bb · ∇T, (2.34)

where χ‖ is the Spitzer heat conductivity given by (Spitzer, 1962)

χ‖ = 5pe
2meνe

, (2.35)
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and νe is obtained from Equations 1.9 and 1.10.
A pressure anisotropy, ∆ps = p⊥,s − p‖,s, for species s, enters in both the

momentum and entropy equation through the viscosity tensor

Π = −
∑
s

∆ps
(
bb− 1

31
)
, (2.36)

Within the framework of Braginskii-MHD(Braginskii, 1965), this pressure anisotropy
can be calculated from5

∆ps = ps
νs

d lnB3n−2
s

dt
= ps
νs

(3bb : ∇u−∇ · u) , (2.37)

where νs is the Coulomb collision frequency of species s (Equation 1.9 and 1.10).
The last equality can be shown to be true by using the continuity equation and
the induction equation, i.e., Equations 2.25 and 2.27. We see from Equation 2.37
that a pressure anisotropy naturally arises in a weakly collisional or collisionless
plasma because changes in magnetic field strength or plasma density will, in gen-
eral, lead to a non-zero pressure anisotropy. The resulting magnitude of the pres-
sure anisotropy depends inversely on the collision frequency.

The Braginskii viscosity tensor can also be written as

Π = −3%ν‖
(
bb− 1

31
)(
bb− 1

31
)

: ∇u , (2.38)

where the Braginskii viscosity coefficient is defined as

ν‖ = T

ρ

(
nH
νH

+ nHe
νHe

)
. (2.39)

Only the ion pressure anisotropy is included because the electron viscous flux due
to electrons will be lower by a factor of∼

√
me/mi, whereme (mi) is the electron

(ion) mass.
While Braginskii MHD can capture some aspects of low collisionality, i.e.,

anisotropic transport of heat and momentum, it does not correctly describe the
5The notation : has the following meaning bb : ∇u =

∑
i

∑
j
bibj∂iuj which is equivalent to

the trace of the matrix product between the matrices bb and ∇u.
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microscale instabilities (Schekochihin et al., 2005). Using Braginskii MHD, the
growth rates found for the firehose and mirror instabilities are proportional to
the wavenumber which leads to a UV-catastrophe (see also Chapter 7). For com-
puter simulations this means that the growth rate will depend on the numerical
resolution. Since the microscale instabilities do not saturate correctly the pressure
anisotropy can in principle grow to very large values. This wouldmake the simula-
tions more viscous than expected in a simulation where the microscale instabilities
are correctly described.

Motivated by observations in the solar wind and PIC simulations (see also
Section 1.2) Sharma et al. (2006) limited the pressure anisotropy in their shearing
box simulations of the MRI to be within the thresholds set by marginal stability
of microscale instabilities. A similar approach has been used to study the MTI and
the HBI in Kunz et al. (2012) and to study the MTCI and the HPBI in Paper III
(see also Chapter 3).

We consider two important microscale instabilities for the ions, namely the
firehose and the mirror instability (see Chapter 7 for discussion of these instabili-
ties). The firehose instability is unstable if

p⊥
p‖
− 1 < − 2

β‖
, (2.40)

and the mirror instability is unstable if

p⊥
p‖
− 1 > 1

β‖
, (2.41)

where β‖ = 2µ0p‖/B
2 and β⊥ = 2µ0p⊥/B

2. Note that these criteria for instabil-
ity can be rewritten into a criterion for stability

−B
2

µ0
< ∆p < B2

2µ0
. (2.42)

In the simulations where we use limiters, the pressure anisotropy is calculated
using Equation 2.36 but its value is limited to lie in the interval given by Equation
2.42.
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Chapter 3

On the distribution of helium in
the intracluster medium

This chapter provides a summary of our work on the stability properties of the
ICM which resulted in the publications Berlok and Pessah (2015), Berlok and
Pessah (2016a), and Berlok and Pessah (2016b), hereafter referred to as Paper I,
Paper II, and Paper III, respectively. The work leading to these publications was
initiated during the M.Sc. study and some of the material in the publications
has previously been presented in Berlok (2014). In this chapter we summarize our
findings with an emphasis on the results that were obtained during the PhD study.

The work presented here is a generalization of previous studies on weakly
collisional atmospheres which are stratified in temperature but have a constant
composition. These studies found that a weakly collisional atmosphere can be
unstable to the magneto-thermal instability (MTI, Balbus 2000, 2001) when the
temperature decreases with height and to the heat-flux-driven buoyancy instability
(HBI, Quataert 2008) when temperature increases with height. The criteria for
instability for theMTI and theHBI are such that they could be present in the outer
and inner regions of cool core clusters. The reason is that the temperature in such
clusters increases (decreases) with radius in the inner (outer) regions. A typical
temperature distribution is shown with a red dashed line in Figure 3.1 (Vikhlinin
et al., 2006). These instabilities have been the subject of intensive research and a
review can be found in Balbus and Potter (2016). Many references to the literature
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3. On the distribution of helium in the intracluster medium

Figure 3.1: Figure 7 in Paper I. The mean molecular weight profile (blue line) in a
11 Gyr-old galaxy cluster and the temperature profile (red dashed line) used in the
model of Peng and Nagai (2009). The dashed black line indicates the primordial
composition.

on the MTI and the HBI can also be found in Paper I, Paper II and Paper III.
The motivation for including a composition gradient is that 1D sedimentation

models predict its existence (Fabian and Pringle, 1977; Gilfanov and Syunyaev,
1984; Chuzhoy and Nusser, 2003; Chuzhoy and Loeb, 2004; Peng and Nagai,
2009; Shtykovskiy and Gilfanov, 2010) and that X-ray measurements might be
biased as a consequence (Markevitch, 2007; Peng and Nagai, 2009).

We have used the model by Peng and Nagai (2009) extensively in Paper I, Pa-
per II and Paper III. Their model for a 11 Gyr old intracluster medium, in which
helium has been sedimenting towards the core, is shown in Figure 3.1. In this
figure the mean molecular weight, µ, is seen to have a positive (negative) gradi-
ent in the inner (outer) ICM. Correspondingly, the temperature profile, which
is given by Vikhlinin et al. (2006), is seen to have positive (negative) gradient in
the inner (outer) ICM. The similarity between the temperature and composition
profiles arises due to the assumed temperature dependence of the friction between
hydrogen and helium ions as the helium ions sediment (Peng and Nagai, 2009).
The black dashed line shows the initial distribution of composition in their model,
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given by a constant primordial value of µ = 0.59.
The 1D sedimentation models have not been compared directly with observa-

tions because the amount of helium in the hot ICM cannot be inferred directly
from X-ray measurements. The problem is that helium is completely ionized at
the > 1 keV temperatures characteristic of the ICM such that line emission from
helium is not emitted. The helium composition will however effect the X-ray
continuum (Bremsstrahlung) emission as the intensity of Bremsstrahlung emis-
sion depends on the charge of the ion species. We briefly outline the arguments
put forward in Markevitch (2007) in order to show how this can lead to biases in
X-ray observations if the composition is not constant.

If we assume that all ion species and electrons have the same temperature then
the emissivity is given by (Bartelmann, 2013)

j(ω) = 16π2

3
√

3
e6

m2
ec

3 e
−~ω/T

√
2me

πT

∑
s

e2
snsne , (3.1)

where ~ is the reduced Planck constant. From this equation we see that the emis-
sivity of a binary mixture of hydrogen and helium is proportional to

j(ω) ∝
∑
s

esnsne = 4e2nHene + e2nHne =

e2(2nHe + nH)(4nHe + nH) = e2n2
H(2x+ 1)(4x+ 1) , (3.2)

where we used that the electron number density ne = 2nHe + nH (one electron
per hydrogen ion and two per helium ion) and defined x = nHe/nH to be the ratio
of the helium and hydrogen number densities. As x cannot be determined spec-
troscopically a common assumption is that the helium composition is primordial,
i.e. x = 0.083 (Markevitch, 2007). This assumption is seen to lead to an error in
the estimate of nH if helium has sedimented such that x > 0.083. Such an error
can propagate into the estimate for the gas density of the ICM, the total mass of
the ICM and the gas mass fraction of the cluster (Markevitch, 2007).

In the helium sedimentation model of Peng and Nagai (2009) the composition
profile, shown in Figure 3.1 with a blue solid line, leads to an error of 20 % in the
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predicted value of the Hubble constant if a primordial composition is assumed1.
As originally shown in Pessah and Chakraborty (2013), the model of Peng

and Nagai (2009) is however unstable to generalizations of the MTI and HBI
due to the temperature and composition gradients. The most important2 of these
generalizations are called the magneto-thermo-compositional instability (MTCI)
and the heat- and particle-flux-driven buoyancy instability (HPBI) (Pessah and
Chakraborty, 2013). If these instabilities are able to mix the composition gradi-
ent on a fast time scale then the concerns about biases in X-ray observations raised
above would be severely alleviated. Attempting to answer this question has been
the aim of Paper I, Paper II and Paper III.

3.1 Paper I

In the first paper we used the Braginskii-MHD equations (Equations 2.25-2.31)
to perform a local, linear mode analysis of plane-parallel atmospheres that are
stratified in composition and temperature. The dispersion relation was solved for
a number of ideal cases, i.e., strictly isothermal atmospheres with varying signs
of the composition gradient and magnetic field inclination with respect to grav-
ity. The main conclusions found from this idealized setting was that i) isothermal
atmospheres comprised of weakly collisional plasmas in which the composition
increases with height are unstable regardless of whether the magnetic field is hori-
zontal (the MTCI) or vertical (the HPBI). Furthermore, when the magnetic field
is inclined both the MTCI and the HPBI can be present at the same time. This is
in contrast to the temperature driven instabilities, i.e., the MTI and the HBI will
never be present at the same time as they require temperature gradients pointing
in opposite directions. ii) the HPBI has its most unstable wavelength at a length
scale longer than the scale height of the atmosphere when the effect of Braginskii
viscosity is taken into account. This feature of the HPBI calls into question the lo-

1Conversely, independent measurements of the Hubble constant could in principle be used to
constrain the amount of helium sedimentation present (Markevitch, 2007). This requires that other
sources of error are so small that the bias introduced by assuming a constant composition is domi-
nant.

2Several other instabilities, such as diffusion modes driven by anisotropic diffusion of helium
composition, are introduced in Pessah and Chakraborty (2013). Some of these are also discussed in
Paper I and Paper II.
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cal, linear analysis that was performed as it assumed that the wavelengths are much
smaller than the scale height of the atmosphere. A similar problem has previously
been found for the HBI (Kunz, 2011) and consequently remedied by extending
the linear analysis to be quasi-global (Latter and Kunz, 2012).

We have similarly extended the linear analysis of the HPBI in Paper III. These
conclusions have also been presented in Berlok (2014). Similarly, both Pessah and
Chakraborty (2013) and Berlok (2014) applied local, linear stability analysis to
current state-of-art models for the distribution of composition and temperature
in the intracluster medium. The main extension to the work presented in Pessah
and Chakraborty (2013) and Paper I during the PhD study was a much more
detailed application of the linear stability analysis to the cluster model of Peng and
Nagai (2009). In Paper I, the model of Peng and Nagai (2009) is used to estimate
gradients of temperature and composition (along with other physical quantities)
as a function of radius. Given this knowledge, the growth rates of the instabilities
at any given radius can be found by solving the dispersion relation as a function
of wave number. An example of the resulting growth rate contours is presented
in Figure 3.2. In this figure the growth rates have been calculated for both models
without (left panel) and with (right panel) a composition gradient. The values
used to create this figure were taken at r/r500 = 0.5, i.e., in the outskirts where
both the temperature and composition decrease with radius in the model of Peng
and Nagai (2009). The growth rates in the left panel panel are due to the MTI and
the growth rates in the right panel are due to its generalization, the MTCI. We see
that the presence of a composition gradient reduces the maximal growth rate of
the instability by roughly 15%.

The dispersion relation presented in Paper I provides an extension to the dis-
persion relation previously derived in Pessah and Chakraborty (2013) by retaining
the terms responsible for magnetic tension. By also assuming a radially decreasing
dependence of the magnetic field strength as found by Bonafede et al. (2010) this
enabled us to study the effect of magnetic tension. We found that magnetic tension
can inhibit growth rates and provide a cut-off above which parallel wavenumbers
are stabilized. The latter effect is clearly seen in Figure 3.2 while the former is
illustrated in Figure 3.3. In order to produce this figure the maximum growth
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3. On the distribution of helium in the intracluster medium

Figure 3.2: Figure 11 in Paper I. Contour plots of the growth rate in Gyr−1 for
the outer ICM (r/r500 = 0.5 where r500 = 1.63 Mpc). This region is unstable
to the MTI at t = 0 Gyr (left panel) or the MTCI and the conduction modes at
t = 11 Gyr (right panel). The most unstable modes are found at intermediate
parallel wavenumbers at which heat conduction is effective. Magnetic tension sta-
bilizes the instability at higher parallel wavenumbers. The maximum growth rate
is decreased by 15% with respect to the homogeneous case. The magnetic field,
indicated with a red solid line, is assumed to be inclined at angle of 45 deg with
respect to the direction of gravity.

rate3 has been calculated at each radii by using the dispersion relation in Pessah
and Chakraborty (2013) (dashed lines) and the dispersion relation that includes
magnetic tension (solid lines). The red (blue) lines in Figure 3.2 assume a vertical
(horizontal) magnetic field for which only the inner (outer) ICM is unstable. The
growth rates are decreased at all radii when magnetic tension is included.

The application of the local, linear, stability analysis to the ICM model of
Peng and Nagai (2009) and the influence of composition gradients, is summarized
in Figure 3.4. In this figure we have calculated the maximum growth rate as a
function of radius for a cluster model with the composition profile given by Peng

3The maximum growth rate is largest growth rate found when calculating the growth rates as a
function of wave number, as in Figure 3.2.
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Figure 3.3: Figure 14 in Paper I. Themaximum growth rates as a function of radius
in the cluster model of Peng and Nagai (2009) at t = 11 Gyr in the limit where
magnetic tension is neglected (dashed lines) and when it is taken into account
(solid lines).

and Nagai (2009) model at t = 11 Gyr (solid lines) and a cluster model with
constant composition (dashed lines, their model at t = 0 Gyr). From this figure
we conclude that the composition gradients in the model of Peng andNagai (2009)
will increase (decrease) the growth rates in the inner (outer) regions with respect
to the constant composition scenario. We also observe that the model is unstable
at all radii.

3.2 Paper II

In the second paper we presented the first simulations of some of the instabilities
that are driven by gradients in composition in weakly collisional, magnetized at-
mospheres. The most interesting of the simulations considered the nonlinear evo-
lution of isothermal atmospheres in which the mean molecular weight increases
with height. This is the physical setup that in Paper I was found to be unstable
regardless of the magnetic field inclination (to either the MTCI or the HPBI or
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3. On the distribution of helium in the intracluster medium

Figure 3.4: Figure 15 in Paper I. The maximum growth rate as a function of radius
in the cluster model of Peng and Nagai (2009) at t = 0 (dashed) and t = 11 Gyr
(solid) for a field with θ = 90◦ (red) and θ = 0◦ (blue) inclination with respect to
the direction of gravity. The effects of a finite β are included. The sedimentation
increases (decreases) the theoretically predicted growth rates in the inner (outer)
cluster.

potentially both instabilities) due to the weakly collisional nature of the plasma.
The evolution of the magnetic field structure and composition for these instabil-
ities was presented in figure 7 in Paper II for the case of an initial horizontal and
vertical magnetic field. In both cases the instabilities were shown to lead to mixing
of the composition (i.e., the instabilities act to erase the helium gradient) and to
saturate with a magnetic field inclination of approximately 45 deg.

In order to perform the simulations, a modification of the MHD code Athena
(Stone et al., 2008) was required. This modification entailed including the value
of the mean molecular weight in the calculation of the temperature of the plasma.
Anisotropic diffusion of the helium composition along magnetic field lines was
also implemented along with the tests presented in the appendix of Paper II. Fur-
thermore, the transport coefficients for anisotropic diffusion of composition, heat
and momentum (D, χ‖ and ν‖) were made spatially dependent4, a feature that

4The public version Athena (v. 4.2) assumes constant coefficients for χ‖ and ν‖.

36



Paper II

0 1 2 3 4 5

t

10-5

10-4

10-3

10-2

10-1

100

δBz/B

δvz

δµ/µ

δT/T

δρ/ρ

Figure 3.5: Figure 2 in Paper II. Evolution of box-averaged quantities for the
MTCI with χ‖ = 3 × 10−3 and β0 = 2 × 108. The perturbed quantities grow
exponentially with a growth rate σ = 0.40.

was necessary to perform the quasi-global simulations appearing in Paper III. The
changes to Athena also included implementing custom boundary conditions that
satisfy hydrostatic equilibrium in the vertical direction. The changes were tested
by comparing the local, linear theory with the results from simulations.

Most of the code changes described above were implemented during the M.Sc.
study and have also been presented in Berlok (2014). During the PhD study a
method for exciting all the components of the eigenmodes of the system exactly
was developed. This improvement, compared to the previous efforts in which
only the velocity components were excited, enabled a much more clean study of
the linear evolution of the instabilities. In Figure 3.5 we present an example of the
exponential evolution for theMTCI. It is evident that the instability grows cleanly
from t/t0 = 0 compared with, e.g., figure 6.7 in Berlok (2014), i.e., without an
initial transient.

The comparisons between local simulations and local, linear theory presented
in Berlok (2014) only considered isothermal atmospheres. In contrast we showed
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Figure 3.6: Figure 6 in Paper II. Growth rates at r/r500 = 0.02 as a function of
k = kx = kz (left panel) and growth rates at r/r500 = 0.5 as a function of k = kx.
Theoretical values (blue solid lines) and values obtained from simulations (green
crosses) are seen to agree.

explicitly in Paper II that growth rates found for atmospheres that are stratified in
both temperature and composition agree with the local linear theory developed
in Paper I and Pessah and Chakraborty (2013). This is illustrated in Figure 3.6 in
which the left (right) panel shows the growth rates as a function of wavenumber
for the HPBI (MTCI). The parameters used to perform these simulations were
found by using values from the model of Peng and Nagai (2009) at r/r500 = 0.02
and r/r500 = 0.5 for the left and right panels, respectively. Details can be found
in section 4.4 in Paper II.

The nonlinear simulations presented in Paper II made a number of assump-
tions that limited the applicability of the results to the ICM. These include i)
assuming locality, i.e., the simulation had a size of H0/10 × H0/10 where H0

is the pressure scale height, and the heat conductivity was set to be a constant,
ii) assuming isothermality, i.e., neglecting the temperature gradient known to be
present in the ICM, iii) using a background composition gradient with a signif-
icantly larger value than the value expected in the sedimentation model of Peng
and Nagai (2009) and iv) ignoring the effect of Braginskii viscosity. The neglect of

38



Paper III

Braginskii viscosity was necessary for consistency with the local approximation
as the fastest growing modes for the HPBI would otherwise not have fit inside the
simulation domain (Paper I). Although the simulations were thus highly idealized
compared to the properties expected in the ICM, they uncovered basic properties
of the instabilities, i.e., their ability to eliminate radial gradients in composition,
which motivated further studies in which we were able to relax some of these
assumptions.

3.3 Paper III

In Paper III we presented the first quasi-global simulations of the MTCI and the
HPBI with gradients in composition and temperature taken from the model of
Peng and Nagai (2009). We also developed a quasi-global linear theory for the
HPBI and applied it to their model. In this short summary of Paper III we limit
the discussion to the theory for, and simulations of, the HPBI.

We consider the model atmosphere, illustrated in Figure 3.7, in which both
temperature and composition increase with height. The magnetic field is assumed
to be initially vertical. The profiles for temperature, mean molecular weight, den-
sity and pressure satisfy hydrostatic equilibrium and the heat flux has the property
that∇·Q = 0 such that this model atmosphere is an equilibrium solution to Equa-
tions 2.25-2.31. This equilibrium is stable according to the Schwarzschild (1958)
and Ledoux (1947) criteria. Nevertheless, due to the weakly collisional nature
of the plasma, the equilibrium is unstable according to the dispersion relations
derived in Pessah and Chakraborty (2013) and Berlok and Pessah (2015).

The atmosphere shown in Figure 3.7 has a vertical extent of two scale heights
(where H0 = 40 kpc). In order to calculate the growth rates and eigenmodes for
such a system a local stability analysis does not suffice. We have instead derived
a quasi-global theory in which the perturbations are not assumed to be periodic
in the vertical direction (Berlok, 2014). This results in a coupled set of partial
differential equations for the perturbations which can be expressed and solved as
a generalized eigenvalue problem using pseudo-spectral methods (Boyd, 2000). In
Paper III, we applied this theory to the model atmosphere shown in Figure 3.7 in
order to calculate the relevant growth rates. These are shown as a function of the
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Figure 3.7: Figure 1 in Paper III. Equilibrium atmosphere inspired by the sedi-
mentation model of Peng and Nagai (2009) and the radial temperature profile of
Vikhlinin et al. (2006). The temperature (blue) and the mean molecular weight
(green) increase with radius while pressure (red) and density (magenta) decrease
with radius at this radial distance in the cluster model. The derivative of the en-
tropy (purple) is positive, indicating stability according to the Schwarzschild cri-
terion.

horizontal wavenumber in Figure 3.8. In this figure, the blue solid lines represent
the theoretical predictions and the crosses represent results from linear simulations
in which eigenmodes were excited. The maximum growth rate is found to be
roughly 10 Gyr−1, slightly higher than what was found using local linear theory
in Paper I.We included Braginskii viscosity and took into account the temperature
dependence of the coefficients for heat conductivity and Braginskii viscosity, χ‖
and ν‖ for this calculation. The radial dependence of these parameters in themodel
of Peng and Nagai (2009) was presented in figure 17 in Paper I.

The evolution of the model atmosphere, seeded with subsonic Gaussian veloc-
ity perturbations, is shown in Figure 3.9 on page 43. In this figure, each row of
panels shows the time evolution of the composition and the initially vertical mag-
netic field in a simulation of theHPBI. Three different simulationswere performed
in order to quantify how Braginskii viscosity influences the evolution of the in-
stability. The first row of panels does not include Braginskii viscosity, the middle
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Figure 3.8: Figure 3 in Paper III. Growth rates as a function of the horizontal
wavenumber, kxH0, for the 10 fastest growing modes in units of σ0 = t−1

0 where
t0 = H0/v0,th = 45 Myr. The solid blue lines were obtained using the pseudo-
spectral method. Each cross corresponds to a simulation were the eigenmodes
were used for initial conditions. The numerical growth rate was found from the
subsequent exponential evolution.

row employs Braginskii viscosity but uses limiters on the pressure anisotropy (see
discussion of this approach in Section 2.3) and the bottom row employs Braginskii
viscosity without any modifications to the pressure anisotropy. Helium mixing is
observed in all three simulations with the most vigorous mixing happening in the
simulation without Braginskii viscosity.

The quasi-global linear theory can be used to predict that the instability will
grow faster at the bottom of the atmosphere. This is illustrated in figure 2 in Paper
III which shows that the fastest growing eigenmodes have their highest amplitudes
in the lower part of the atmosphere. This is also observed in the second panels in
the second and third rows in Figure 3.9.
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The purpose of Paper I was to provide the basic theoretical framework for in-
stabilities present in weakly collisional plasmas stratified in temperature and com-
position and Paper II sought to document our modifications to the MHD code
Athena in order to show that it can now reliably model such atmospheres. In Pa-
per III we have made a more serious attempt to apply the methods that we have
developed to the cluster model of Peng and Nagai (2009). This was done in order
to better understandwhether the instabilities discussed in Pessah andChakraborty
(2013), Paper I and Paper II can lead to helium mixing on astrophysically relevant
time scales. If mixing does indeed happen on a fast time scale, this would call into
question the 1D sedimentation models which do not include mixing by plasma in-
stabilities (Fabian and Pringle, 1977; Gilfanov and Syunyaev, 1984; Chuzhoy and
Nusser, 2003; Chuzhoy and Loeb, 2004; Peng and Nagai, 2009; Shtykovskiy and
Gilfanov, 2010). As our models do not include helium sedimentation, such a con-
clusion would motivate further work on developing a model that self-consistently
includes the combined influence of plasma instabilities and helium sedimentation.
As observational evidence for gradients in the concentration of helium is so far
unattainable due to the high temperatures of the ICM, such a model would be
needed in order to indicate whether helium composition gradients, with their po-
tential for causing biases in the estimates of cluster properties, should be a concern
for precision cosmology, or not (Markevitch, 2007; Peng and Nagai, 2009).
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Figure 3.9: Figure 5 in Paper III. Evolution of the HPBI as a function of time in
units of t0 = H0/v0,th = 45 Myr. The size of the box is H0 × 2H0 with H0 = 40
kpc. The bottom of the atmosphere has T0 = 5.8 keV and c0 = 0.52 while the
top of the atmosphere has T = 9.6 keV and c = 0.62, values found at r0 = 160
kpc and r = r0 + 2H0 = 240 kpc in the model of Peng and Nagai (2009). The
top row of panels include anisotropic heat conduction and the middle and bottom
rows also include Braginskii viscosity. The middle row uses limiters. Solid lines
indicate magnetic field lines and green (purple) corresponds to a high (low) helium
content.
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Chapter 4

The Hall dispersion relation

The equations of Hall MHD presented in Section 2.2 corresponds to a two-fluid
model of ions and electrons in which the electron fluid is considered inertialess.
This is the cold ion limit of the Vlasov-fluid equations which implies that Hall
MHD describes the Vlasov-fluid code simulations when the ions are cold. Conse-
quently, a good understanding of Hall MHD is useful for testing the Vlasov-fluid
code. In this chapter we derive the Hall MHD dispersion relation as in Pandey
and Wardle (2008) and solve it in order to describe the waves that are present in
Hall MHD. We also present some analytical results for the eigenvalues, i.e., wave-
frequencies, and the eigenmodes. These results are used to initialize many of the
tests presented in Chapter 12.

The equations of Hall MHD (see Section 2.2) describing the plasma are the
continuity equation

∂%

∂t
+∇ · (%u) = 0 , (4.1)

the momentum equation

%
du

dt
= −∇p+ J ×B , (4.2)

Faraday’s law (Equation 2.8) with the electric field given by

E = −u×B + ηJ + ηHJ × b , (4.3)

45



4. The Hall dispersion relation

and the current given by Ampére’s law (Equation 2.9). In these equations u is the
fluid velocity, d/dt = ∂/∂t+u ·∇ is the Lagrangian derivative and p = c2

s% is the
pressure where cs is the sound speed. Here we have defined the Hall coefficient as
(Pandey and Wardle, 2008)

ηH = B

ene
, (4.4)

and η is the Ohmic resistivity which arises due electron-ion collisions (Baumjo-
hann andTreumann, 1996). The latter is thus zero in a strictly collisionless plasma.

We linearize the equations and assume perturbations of the form exp(−iωt+
ik · x). We also assume, without loss of generality, that B = Bez and k =
k⊥ex + k‖ez. The details of this derivation can be found in Appendix A.5. The
resulting eigenvalue problem is given by

A · δx = ω δx , (4.5)

where

A =



0 k⊥ 0 k‖ 0 0 0
k⊥c

2
s 0 0 0 −k‖v2

a 0 k⊥v
2
a

0 0 0 0 0 −k‖v2
a 0

k‖c
2
s 0 0 0 0 0 0

0 −k‖ 0 0 −ik2
‖η/µ0 −ik2

‖ηH/µ0 ik⊥k‖η/µ0

0 0 −k‖ 0 ik2
‖ηH/µ0 −ik2η/µ0 −ik⊥k‖ηH/µ0

0 k⊥ 0 0 ik⊥k‖η/µ0 ik⊥k‖ηH/µ0 −ik2
⊥η/µ0


,

(4.6)

ω is the eigenvalue and

δx =
(
δ%/%, δux, δuy, δuz, δbx, δby, δbz

)T
,

(4.7)

is the eigenvector of Fourier amplitudes. In the Vlasov-fluid code, this eigenvalue
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problem is solved numerically when initializing tests1. Physical insight can how-
ever be gleaned by solving the eigenvalue problem analytically for a few special
cases as we do in the following sections.

As mentioned in the beginning of this chapter, Hall MHD corresponds to
setting the temperature to zero for the ions. An interesting question is therefore
what happens when the temperature of the ions is not zero. This is the realm of
Vlasov-fluid theory. We anticipate some of the results of Vlasov-fluid theory found
in Chapter 7 by commenting on the influence of hot ions and/or temperature
anisotropies on the various modes.

4.1 Perpendicular propagation

We start out by considering perpendicular propagation, i.e. k = k⊥ex. We also
assume that Ohmic resistivity is negligible, η = 0, and obtain the eigenvalues

ω = ±k⊥
√
c2
s + v2

a , (4.8)

with corresponding eigenmode given by δ%/% = 1, δux = ±ω/k⊥ and δbz = 1.
This eigenmode is longitudinal and we recognize it as the compressional Alfvén
wave (also called the fast magnetosonic wave) known from ideal MHD. It is an
acoustic wave which travels in the direction perpendicular to the background field
with its wave frequency modified by the background magnetic field. We see that
the compressional Alfvén wave is not influenced by the Hall term. The reason is
that the perturbed current and the background magnetic field are aligned. Ohmic
resistivity will however lead to exponential decay of the wave. When the ions are
hot Vlasov-fluid theory predicts ion Bernstein modes for this orientation of the
wavevector. These are discussed in more detail in Chapter 12.

1This can be an advantage, especially if η 6= 0 as the eigenmodes are complicated in this case. We
use the eigenvalue solver in Numpy to calculate the eigenvalues and eigenmodes of A.
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4.2 Parallel propagation

We then consider parallel propagation with k = k‖ez. The first set of eigenvalues
we find are

ω = ±k‖cs , (4.9)

with eigenmodes δ%/% = 1 and δuz = ±cs. These are simply sound waves which
are unaffected by the magnetic field because of the parallel propagation. In plasma
theory, these sound waves are referred to as ion-acoustic waves (Ichimaru, 1973).
They are subject to Landau damping when the ions are hot. In hybrid PIC codes
they are also subject to a numerical instability known as the finite grid instability
(Rambo, 1995). Both Landau damping and the finite grid instability are discussed
in more detail in Chapter 11.

The four other eigenvalues are the frequencies of transverse waves

ω2
± =

k2
‖
4
(√

η2
Hk

2
‖ + 4v2

a ± ηHk‖
)2
, (4.10)

where the± correspond towhistler waves (+) and ion-cyclotronwaves (−). When
the ions are hot these waves can be subject to damping (e.g. ion cyclotron damp-
ing) andwhen the temperature distribution is anisotropic various instabilities such
as the ion-cyclotron and firehose instabilities can arise. More information on this
will be given in Chapter 7 and 12.

The whistler and ion-cyclotron waves arise due to the Hall term in the in-
duction equation and replace the Alfvén wave found in ideal MHD which has
frequency

ω = ±k‖va . (4.11)

Equation 4.11 is recovered when ηH = 0 in Equation 4.10.
We now consider a plasma with a single ion species with mass m and ion
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Figure 4.1: Dispersion of whistler, ion-cyclotron and Alfvén waves.

cyclotron frequency,

Ω = eB

m
. (4.12)

TheHall parameter introduced is then given by ηH = v2
a/Ωwhere va is the Alfvén

speed given by

v2
a = B2

µ0mn
, (4.13)

and n = ne is the ion number density. We can then write the eigenvalues for the
whistler waves as

ω
(r)
± = ±k‖va2Ω

(√
k2
‖v

2
a + 4Ω2 + k‖va

)
, (4.14)

and the eigenvalues for the ion-cyclotron waves as

ω
(l)
± = ±k‖va2Ω

(√
k2
‖v

2
a + 4Ω2 − k‖va

)
. (4.15)

The r and l superscripts will be explained in section 4.2.1. The frequencies for
whistler, ion-cyclotron and Alfvén waves are shown in Figure 4.1 as a function
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of wavenumber. We observe that both whistler and ion-cyclotron waves have the
same frequency as the Alfvén wave in the limit k‖va/Ω � 1. The Hall term is
not important in this limit where the wavelengths considered are much longer
than the ion inertial length, d = va/Ω (Birn et al., 2001). In the opposite limit,
k‖va/Ω� 1, the whistler frequency is given by

ω
(r)
± ≈ ±

k2
‖v

2
a

Ω , (4.16)

and the frequency of the ion-cyclotron wave asymptotes to the ion-cyclotron fre-
quency ω(l)

± ≈ ±Ω. We also conclude from Equations 4.14 and 4.15 that both the
whistler and the ion-cyclotron waves are dispersive, i.e., their phase-speed depends
on thewavenumber. For thewhistler waves the phase-speed keeps increasing2 with
k‖. This results in a very severe time step constraint in simulations with the Hall
effect as the Courant–Friedrichs–Lewy (CFL) condition (Courant, Friedrichs, and
Lewy, 1967; Durran, 2010) needs to be fulfilled on the shortest scale in the system
in order to avoid numerical instability. In our simulations of the whistler wave
we thus require

∆t < C

|ω(kmax)| , (4.17)

where C < 1 is the Courant number, ω(kmax) is estimated from Equation 4.14
and kmax = π/∆x is the maximum wavenumber that can be resolved on the grid
(assuming the grid distance to be uniform, ∆x = ∆y for simplicity).

4.2.1 Polarization

The eigenvectors for whistler and ion-cyclotron waves are incompressible (δ%/% =
0) and transverse (δuz = δbz = 0). The transverse components are given by

(δux, δuy, δbx, δby) = (±iω(l)
± /k‖, −ω(l)

± /k‖, ∓i, 1) , (4.18)
2In a treatment where the electrons are also treated kinetically, the whistler waves are electron

cyclotron waves whose frequency asymptotes to the electron cyclotron frequency, eB/me. This
is in complete analogy with the behavior of the ion-cyclotron waves, see, e.g., Fitzpatrick (2014).
As the electron cyclotron frequency does not enter in Hall MHD the whistler frequency grows
unbounded.
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for whistler waves with frequency ω(r)
± and by

(δux, δuy, δbx, δby) = (∓iω(r)
± /k‖,−ω(r)

± /k‖,±i, 1) . (4.19)

for ion-cyclotron waves with frequency ω(l)
± . The x and y components are seen

to be out of phase by π/2. We can determine their polarization by using the
definition in Gary (1993) where the polarization, P , is defined as3

P ≡ −i δEy
δEx

Re(ω)
|Re(ω)| = i

δbx
δby

Re(ω)
|Re(ω)| , (4.20)

and P = −1 (P = 1) corresponds to left-hand (right-hand) circularly polarized
waves.

Whistlers with frequency ω(r)
± have δb = (∓i, 1, 0) and ion-cyclotron waves

with ω(l)
± have δb = (±i, 1, 0). We find P = −1 for the ion-cyclotron waves (left-

hand circularly polarized) and P = 1 for the whistler waves (right-hand circularly
polarized). This agrees with the l and r superscripts which are revealed to be
abbreviations for left and right.

4.3 Conclusion

In this chapter have derived and solved the dispersion relation for Hall MHD in
order to obtain expressions for the frequencies and eigenmodes of the whistler
wave, the ion-cyclotron wave, the fast magnetosonic wave and the ion-acoustic
wave (i.e., sound wave). These expressions will be used for testing purposes in
Chapter 12. We only considered k = k‖ and k⊥ but the Hall MHD dispersion
solver that we have implemented in Python can also handle general orientations
of the wave vector.

3The latter equality was found using the linearized version of Faraday’s law, i.e. Equation A.67
in Appendix A.5.
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Chapter 5

Derivation of the Vlasov and
Vlasov-fluid dispersion relations

We derived the dispersion relation and found the corresponding eigenmodes for
Hall MHD in the previous chapter. These will be useful for testing the hybrid
code in Chapter 12. As pointed out, however, Hall MHD corresponds to the cold
ion limit of the Vlasov-fluid equations. The main purpose of developing a hybrid
code is to be able to study plasmas in which the ions are hot. Proper testing of
the hybrid code should therefore involve the eigenmodes and frequencies of a hot
plasma. The dispersion relation for a hot plasma turns out to be significantly more
complicated than the Hall MHD dispersion relation. And while the Hall MHD
frequencies were all real, the frequencies are often complex for a hot plasma. With
our convention for the complex exponential, complex frequencies correspond to
damping when Im(ω) < 0 or instability when Im(ω) > 0. We will sometimes
use the shorthand γ = Im(ω).

In this chapter we derive the dispersion relation for a hot, uniform, magnetized
plasma in terms of the conductivity tensor, σ. This tensor is defined to be the
linear relationship between the perturbed electric field, δE, and the perturbed
total current, δJ , i.e.,

δJ = σ · δE. (5.1)
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5. Derivation of the Vlasov and Vlasov-fluid dispersion relations

All the complexity that arises from dealing with a hot plasma is contained in σ.
This makes the derivations of the dispersion relation in this chapter surprisingly
simple. The expression for σ, on the other hand, is very complicated. It depends
on the specific form of the equilibrium phase-space distribution function, fs, for
each plasma species. For the Vlasov-fluid approach we only want to treat the ions
kinetically while the electrons are treated as a fluid. We can define the species
dependent conductivity

δJs = σs · δE, (5.2)

which, due to the linearity of the problem is such that the ion conductivity ten-
sor can be written as σi = ∑

s σs, the sum extending only over ion species. The
kinetic expression for σs, which is necessary to evaluate the ion conductivity ten-
sor, is derived in Chapter 6, see Equation 6.5. The total conductivity tensor can
then be written as σ = σi + σe where σe is given by a fluid expression in the
Vlasov-fluid framework (Equation 5.23).

5.1 Vlasov-fluid dispersion relation

We consider Faraday’s law (Equation 2.8)

∂B

∂t
= −∇×E , (5.3)

Ampére’s law (Equation 2.9)

∇×B = µ0J , (5.4)

where the total current (Equation 2.10)

J = Je +
∑
s

Js , (5.5)
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Vlasov-fluid dispersion relation

is given by the sum of the electron and ion currents. We also consider the electron
continuity equation

∂ne
∂t

+∇ · (neue) = 0 , (5.6)

and the generalized Ohm’s law for the electric field (Equation 2.14)

ene(E + ue ×B) +∇pe = 0 . (5.7)

We perturb these equations and assume a dependence exp(−iωt+ ik ·x) and find

−iωδB = −ik × δE , (5.8)

ik × δB = µ0δJ , (5.9)

−iω δne
ne

+ ik · δue = 0 , (5.10)

ene(δE + δue ×B) + dpe
dne

ikδne = 0 , (5.11)

where

δJ = δJe +
∑
s

δJs . (5.12)

Combining Equation 5.8 and 5.9 we find(
kk − k21

)
· δE = −iωµ0δJ , (5.13)

which, using Equation 5.12 with δJe = −eneδue and

δJi =
∑
s

δJs = σi · δE , (5.14)

gives (
kk − k21

)
· δE = −iωµ0(σi · δE − eneδue) . (5.15)
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5. Derivation of the Vlasov and Vlasov-fluid dispersion relations

We can find an expression relating δue and δE using the linearized electron con-
tinuity equation and the generalized Ohm’s law (Equations 5.10 and 5.11)

δE = B × δue + 1
iωe

dpe
dne

kk · δue =
(
B × 1 + 1

iωe

dpe
dne

kk

)
· δue .

(5.16)

Defining the matrix

M = B × 1 + 1
iωe

dpe
dne

kk , (5.17)

such that

δE = M · δue , (5.18)

it is evident that

δue = M−1 · δE . (5.19)

Here M−1 can be written explicitly as

M−1 =



0 1
B

0

− 1
B

0 1
B

k⊥
k‖

0 − 1
B

k⊥
k‖

(
dpe
dne

)−1 iωe

k2
‖


, (5.20)

when the wavevector is given by k = k⊥ex+k‖ez and the magnetic field is in the
z-direction,B = Bez.

The dispersion relation can then be written as

DE · δE = 0 , (5.21)
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Vlasov-fluid dispersion relation

where the dispersion tensor is given by

DE = kk − k21 + iωµ0
(
σi − eneM−1

)
. (5.22)

This suggests that we define an electron conductivity as

σe = −eneM−1 , (5.23)

such that Equation 5.22 has the natural interpretation that the effective conductiv-
ity is simply the sum of the ion and electron conductivities, i.e., the Vlasov-fluid
dispersion relation is

DE = kk − k21 + iωµ0(σi + σe) . (5.24)

Equation 5.24 is in a way the expected result. As the difference between a full
Vlasov treatment and the Vlasov-fluid treatment is that the electrons are treated
as a fluid instead of kinetically it seems very reasonable that the only change in
the dispersion relation should be in the electron conductivity. Unfortunately, this
way of writing the dispersion tensor is not well-posed in the limit dpe/dne = 0,
nor is it if B = 0, as can be seen from the expression for the inverse of M in
Equation 5.20. In fact, in either of these limits the inverse cannot be determined
as the determinant of the matrix M is zero. It turns out that this issue disappears
in the limit k⊥ = 0, i.e., parallel propagation, and Equation 5.24 is useful in this
limit (see Chapter 7).

Nevertheless, it would be advantageous to have a general dispersion relation
more suitable for numerical implementation. That is, it would be useful to have
a general plasma dispersion solver which can handle the limit of zero electron
temperature.

The close resemblance between Equation 5.24 and the full Vlasov dispersion
relation (to be derived later, see Equation 5.30) arises because we derived the dis-
persion relation in terms of the perturbed electric field as

DE · δE = 0 , (5.25)
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5. Derivation of the Vlasov and Vlasov-fluid dispersion relations

where DE is the dispersion tensor. It is however possible to write down the dis-
persion relation in terms of other perturbed quantities.

Cerfon and Freidberg (2011) state that it is most natural to work in terms of
δue in the Vlasov-fluid framework. This will lead to a different expression for the
dispersion tensor which turns out to be more well-behaved.

In order to derive the dispersion relation in terms of δue we go back to Equa-
tion 5.15 and substitute for δE by using Equation 5.16. This yields

(
kk − k21

)
·
(
B × 1 + 1

iωe

dpe
dne

kk

)
· δue =

−iωµ0

(
σi ·

[
B × 1 + 1

iωe

dpe
dne

kk

]
· δue − eneδue

)
, (5.26)

or, after some rearrangement and simplifications(
kk − k21 + iωµ0σi

)
· (B × 1) · δue +

µ0σi ·
(1
e

dpe
dne

kk · δue
)
− iωµ0eneδue = 0 , (5.27)

In this case we can write the dispersion relation as

Du · δue = 0 , (5.28)

where the dispersion tensor is

Du =
(
kk − k21 + iωµ0σi

)
· (B × 1) + µ0σi ·

(1
e

dpe
dne

kk

)
− iωµ0ene1 .

(5.29)

Equation 5.29 is well-behaved in various limits such asB = 0 and dpe/dne = 0. It
is thus advantageous to use this expression for the dispersion tensor although the
contributions from electron and ion physics is not as clearly interpreted as for the
dispersion tensor given in Equation 5.24. We use the dispersion relation given by
Equation 5.29 in the general dispersion solver that we introduce in Chapter 7.
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5.2 Vlasov dispersion relation

For a standard Vlasov dispersion relation both ions and electrons are treated using
the Vlasov equation. This actually makes the dispersion relation appear simpler
although the physics is richer, as kinetic electron physics is now included. The
dispersion relation is simply Equation 5.24 with the expression for the electron
conductivity, σe, given by a kinetic expression (to be derived in Chapter 6, see
Equation 6.5) instead of the fluid expression in Equation 5.23. That is, the disper-
sion relation is found by combining Equations 5.12 and 5.13 without using the
electron fluid equations. We find(

kk − k21 + iωµ0σ
)
· δE = 0 , (5.30)

with

σ =
e+i∑
s

σs , (5.31)

where the sum in this equation extends over all species (both ions and electrons).

5.3 Relativistic dispersion relation

In this section we derive the version of the dispersion relation that is most often
found in plasma physics text books. This dispersion relation is not used in the
rest of the thesis but is included here in order to elucidate how the Vlasov-fluid
approach differs from the standard textbook dispersion relation. The main differ-
ence is that the displacement current is retained in Ampére’s law and that electrons
are treated kinetically. This makes the general dispersion relation derived contain
the eigenmode for electromagnetic waves. The relativistic version of Ampére’s
law is given by

∇×B = µ0J + µ0ε0
∂E

∂t
, (5.32)
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5. Derivation of the Vlasov and Vlasov-fluid dispersion relations

and we find for the linearized version that

ik × δB = µ0δJ − iωµ0ε0δE , (5.33)

which upon substitution of Equation 5.8 and δJ = σ · δE becomes(
kk − k21

)
· δE =

(
−iωµ0σ − ω2µ0ε01

)
· δE . (5.34)

Since c−2 = µ0ε0 where c is the speed of light we have

(
kk − k21

)
· δE = −ω

2

c2

(
i

ε0ω
σ + 1

)
· δE . (5.35)

Or, by defining the dielectric permittivity tensor

ε = ε01 + i

ω
σ , (5.36)

the dispersion relation can be written as(
kk − k21 + ω2

c2
ε

ε0

)
· δE = 0 . (5.37)

This is the conventional way of writing the dispersion relation, see, e.g., equa-
tion 9.55 in Baumjohann and Treumann (1996). The dispersion relation cor-
rectly reduces to the non-relativistic dispersion relation, Equation 5.30, in the limit
c→∞.
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Chapter 6

Derivation of the conductivity
tensor

In this chapter we derive an expression for the conductivity tensor, σs, for species
s for a plasma described by a bi-Maxwellian distribution function (see Equation
6.8). The derivation is a generalization of the calculation in Ichimaru (1973) where
a plasma with isotropic temperature, T‖ = T⊥, is assumed. Similar derivations can
be found in most books on plasma physics (see for instance Stix 1992; Baumjo-
hann and Treumann 1996; Swanson 2003). The only novelty to the derivation
presented here is that we use the plasma dispersion function of Ichimaru (1973),
W (ζ), which differs from the standard plasma dispersion function in Fried and
Conte (1961), Z(ζ). Modulo the different choice of notation, we have compared
our results to Swanson (2003) and find agreement.

6.1 The conductivity tensor

An expression forσs for amagnetized plasma can be derived from theVlasov equa-
tion (Equation 2.3), see, e.g., Ichimaru (1973), Stix (1992), and Swanson (2003).
Here we briefly outline the procedure described in Chapter 10 and Appendix B in
Baumjohann and Treumann (1996).

The main idea is that the linearized Vlasov equation can be solved for the
perturbed distribution function, δfs. The perturbed distribution function can in
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6. Derivation of the conductivity tensor

turn be used to calculate the perturbed current by solving a velocity integral

δJs = esns

∫
dv3 v δfs . (6.1)

The form of δfs will be such that the perturbed electric field, δE, can be pulled
outside the integral, i.e., one ends up with Equation 5.2 where σs is given by an
integral over velocities that depends on the form of δfs (but not on δE ).

In order to find σs the first step is thus to linearize the Vlasov equation (Equa-
tion 2.3). We find

dδfs
dt

= − es
ms

(δE + v × δB) · ∂fs
∂v

, (6.2)

where the time derivative is defined as

d

dt
= ∂

∂t
+ v · ∇+ es

ms
v ×B · ∂

∂v
, (6.3)

the background magnetic field points in the z-direction, B = Bez, and there is
no background electric field. A formal solution for δfs to this equation can found
by integrating over time

δfs = − es
ms

∫ t

−∞
dt′
[
δE(x, t′) + v × δB(x, t′)

] · ∂fs(v)
∂v

, (6.4)

where both x and v depend on time, t′. This equation is called an orbit integral
because it depends on the orbits as given by x and v. In order to proceed, these are
assumed to be given by the form they take in the equilibrium field, i.e., a constant
velocity motion along the magnetic field superimposed with a gyration around
the magnetic field (with gyration frequency Ωs).

Furthermore, the dependence of Equation 6.4 on the perturbed magnetic field
is removed by using Faraday’s law (see Equation 5.8). We also assume a wavevector
of the form k = k⊥ex + k‖ez. Equation 6.4 is an integral over three velocity
dimensions and time. Assuming gyrotropy of the distribution function (that fs
can be written as fs(v‖, v⊥)), two of the integrals can be performed such that only
the integrals over v‖ and v⊥ remain. This procedure is still somewhat involved and

62



The conductivity tensor

we refer to Appendix B in Baumjohann and Treumann (1996) for the details.
In the end one finds that the conductivity tensor is given by (Ichimaru, 1973)

σs = − 1
iω

e2
sns
ms

Λs, (6.5)

where the response tensor is given by1

Λs = 1 +
∞∑

n=−∞

∫
d3v

(
nΩs

v⊥

∂fs
∂v⊥

+ k‖
∂fs
∂v‖

)
Πn(v‖, v⊥)

nΩs + k‖v‖ − ω
, (6.6)

and Πn(v‖, v⊥) is defined in equation 3.72 in Ichimaru (1973) as

Πn(v‖, v⊥) =



n2Ω2
s

k2
⊥
J2
n iv⊥

nΩs

k⊥
JnJ

′
n v‖

nΩs

k⊥
J2
n

−iv⊥
nΩs

k⊥
JnJ

′
n v2

⊥J
′2
n −iv‖v⊥JnJ ′n

v‖
nΩs

k⊥
J2
n iv‖v⊥JnJ

′
n v2

‖J
2
n


. (6.7)

Here the argument of the Bessel function Jn and its derivative J ′n is k⊥v⊥/Ωs.
The Bessel functions and the infinite sum over n appears due to a Jacobi-Anger
expansion which was used to rewrite the orbit integral (Equation 6.4). So far the
only assumption on the equilibrium distribution function is gyrotropy. The task
of determining σ is equivalent to determining Λs for each plasma species, i.e., we
need to perform the integrals over velocity space.

1Equation 3.71 for the dielectric tensor in Ichimaru (1973) can be converted to the form given in
Equations 6.5 and 6.6 by using equations 3.3 and 3.19 in Ichimaru (1973) which relate the dielectric
tensor and the conductivity tensor. We have also used equation 1.19 for the plasma frequency of a
multi-species plasma and equation 2.46 for the plasma frequency of species s. The Λs notation is
also used in Heinemann and Quataert (2014).
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6.2 Velocity space integrals

In the following we perform the velocity space integrals in Equation 6.6 for a
reduced2 gyrotropic distribution function given by

fs = 1
(2π)3/2vt,‖v

2
t,⊥

exp
(
−

v2
‖

2v2
t,‖
− v2

⊥
2v2
t,⊥

)
, (6.8)

where the velocity integral is defined by∫
d3v = 2π

∫ ∞
0

dv⊥v⊥

∫ ∞
−∞

dv‖, (6.9)

and v2
t,‖ = T‖/ms (v2

t,⊥ = T⊥/ms) is the parallel (perpendicular) thermal velocity.
For this distribution function we have

nΩs

v⊥

∂fs
∂v⊥

+ k‖
∂fs
∂v‖

= −
(
nΩs

v2
t,⊥

+
k‖v‖

v2
t,‖

)
fs , (6.10)

which does not depend on the perpendicular velocity, v⊥. This means that the
tensor Λs can be written as

Λs = 1−
∞∑

n=−∞

∫ ∞
−∞

(
nΩs

v2
t,⊥

+
k‖v‖

v2
t,‖

)
S

nΩs + k‖v‖ − ω
dv‖, (6.11)

where

S = 2π
∫ ∞

0
v⊥Πn(v‖, v⊥)fs dv⊥. (6.12)

We proceed by calculating S where only 6 elements are truly unique as it is Her-
mitian. Making use of the integrals listed in appendix A.1 we find after a few

2The distribution function is normalized such that
∫
fs d

3v = 1.
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simplifications that we can write S as

S =



n2Ω2
s

k2
⊥

Γn i
nΩ2

s

k2
⊥
λΓ′n v‖

nΩs

k⊥
Γn

−inΩ2
s

k2
⊥
λΓ′n v2

t,⊥

(
n2Γn
λ
− 2Γ′nλ

)
−iv‖

Γ′n
k⊥

Ωsλ

v‖
nΩs

k⊥
Γn iv‖

Γ′n
k⊥

Ωsλ v2
‖Γn


exp

(
−v2
‖/2v2

t,‖

)
√

2πvt,‖
.

(6.13)

where Γn is shorthand for

Γn(λ) = e−λIn(λ), (6.14)

where In(λ) is themodified Bessel function of the first kind andΓ′n is the derivative
of Γn with respect to λ. Here, the argument λ has been defined as

λ ≡
k2
⊥v

2
t,⊥

Ω2
s

. (6.15)

Having found an expression for S we are now ready to proceed with the integrals
over parallel velocity in Equation 6.11. The details of this procedure can be found
in Appendix A.2. In the end we find that

Λxx =
∞∑

n=−∞
n2 Γn

λ
An, (6.16)

Λxy =
∞∑

n=−∞
inΓ′nAn, (6.17)

Λxz =
∞∑

n=−∞
n

Γn√
λ
ζn
vt,‖
vt,⊥

An, (6.18)

Λyy =
∞∑

n=−∞

(
n2Γn
λ
− 2Γ′nλ

)
An, (6.19)

Λyz = −
∞∑

n=−∞
i
√
λΓ′nζn

vt,‖
vt,⊥

An, (6.20)
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Λzz =
∞∑

n=−∞
Γnζ2

n

v2
t,‖

v2
t,⊥
An −

v2
t,‖

v2
t,⊥
ζ2

0 , (6.21)

where

An = ζ0
ζn

(1−W (ζn)) +
(

1−
v2
t,⊥
v2
t,‖

)
W (ζn) , (6.22)

and the plasma dispersion function,W (z), defined in Ichimaru (1973), is given by

W (z) = 1√
2π

∫ ∞
−∞

xe−x
2/2

x− z dx . (6.23)

The argument of the plasma dispersion function is ζn, given by

ζn ≡
ω − nΩs

k‖vt,‖
. (6.24)

We list some properties of the plasma dispersion function in Appendix A.4 along
with its relation to the standard plasma dispersion function defined in Fried and
Conte (1961).

Our result for Λs can be more compactly written by introducing the tempera-
ture anisotropy, ∆, as well as a tensor, Tn. The temperature anisotropy is defined
as

∆ ≡
v2
t,⊥
v2
t,‖
− 1 = T⊥

T‖
− 1 , (6.25)

and the tensor Tn is defined as

Tn =



n2 Γn
λ

inΓ′n
nΓnζn√
λ
√

1 + ∆

−inΓ′n
n2Γn
λ
− 2Γ′nλ − i

√
λΓ′nζn√
1 + ∆

nΓnζn√
λ
√

1 + ∆
i
√
λΓ′nζn√
1 + ∆

Γnζ2
n

1 + ∆


. (6.26)

66



Velocity space integrals

Using these definitions, Λs can be written as

Λs =
∞∑

n=−∞

[
ζ0
ζn

(1−W (ζn))−∆W (ζn)
]
Tn −

1
1 + ∆ζ2

0ezez. (6.27)

We note that we have used the same notation as in Heinemann and Quataert
(2014) and that our expressions for the response tensor Λs, and the tensor Tn,
reduce to equations 49 and 51 in their paper when ∆ = 0. Our expression for
Tn also agrees with equation 5.21 Ichimaru (1973) in this limit. We have also
compared our expression for the conductivity tensor with the expression for the
dielectric tensor for a hot magnetized plasma in Swanson (2003). We find agree-
ment when the drift velocity, included in the derivation in Swanson (2003), is set
to zero.

The expression for Λs given by Equation 6.27 can be used to compute the con-
ductivity tensor by using Equation 6.5. Equation 6.27 forms the basis for Chap-
ter 7 where we solve the Vlasov-fluid dispersion relation for a warm, magnetized
plasma.
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Chapter 7

Solutions to the Vlasov and
Vlasov-fluid dispersion relations

In the two previous chapters we have spent significant effort in deriving the equa-
tions governing the linear dynamics of collisionless plasmas in both Vlasov-fluid
framework and the Vlasov-Vlasov framework. In this chapter we are finally ready
to look at some of the solutions to the dispersion relations given by Equations
5.29 and 5.30. The dispersion relations describe all the waves and instabilities that
can be present in a uniform plasma with temperature anisotropies. For the sake of
brevity we will have to limit the discussion. As the main purpose of developing
this theory is for us to be able to compare with hybrid simulations, we choose
to focus on the ion scale physics with special emphasis on the instabilities driven
by temperature anisotropies. These are especially the firehose and mirror instabil-
ities, interesting to us because of their potential influence on our studies of the
intracluster medium (see Chapter 3).

This chapter is divided into two sections. In the first section we consider the
simplifying limit of parallel propagation, k = k‖, for the Vlasov-fluid dispersion
relation given by Equation 5.24 in order to make some analytical progress. In the
second section we describe our implementation of a dispersion solver which can
solve the dispersion relations given by Equations 5.29 and 5.30 in the general case
where k = k⊥ex + k‖ez andB = Bez.

69



7.1 Transverse Vlasov-fluid dispersion relation

Let us consider Equation 5.24 for a plasma consisting of fluid electrons and a single
ion species. For notational simplicity1 we drop the subscript i on the ion mass,
m, and cyclotron frequency, Ω. The dispersion relation, Equation 5.24, can in this
case be written compactly by multiplying both sides with v2

a/Ω2 where va is the
Alfvén speed and Ω is the ion cyclotron frequency.We also define the sound speed,
cs, as

c2
s = 1

m

dpe
dne

, (7.1)

and find that the dispersion relation can be written as det DE = 0 where

DE =
(
k21− kk

) v2
a

Ω2 + Λi + Λe , (7.2)

and

Λe =


0 iω/Ω 0

−iω/Ω 0 iω/Ωk⊥/k‖
0 −iω/Ωk⊥/k‖ −ω2/k2

‖c
2
s

, (7.3)

is the response tensor of the electron fluid and Λi is the response tensor of the
warm ion species (see Equation 6.27).

We are interested in the limit of parallel propagation (k⊥ = 0) of the disper-
sion relation given by Equation 7.2. In this limit, λ, (Equation 6.15), also goes to
zero, and the tensor Tn (Equation 6.26), which enters in the definition of the ion
response tensor (Equation 6.27), simplifies to

lim
λ→0

Tn =


(δn,1 + δn,−1)/2 i(δn,1 − δn,−1)/2 0
−i(δn,1 − δn,−1)/2 (δn,1 + δn,−1)/2 0

0 0 ζ2
nδn,0

1 + ∆

, (7.4)

1This should not lead to confusion as these parameters do not enter for the electrons in the
Vlasov-fluid framework.
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see, e.g., equation 5.24 in Ichimaru (1973). In Equation 7.4, δn,m is the Kronecker
delta with the property that δn,m = 1 for n = m and δn,m = 0 for n 6= m. This
greatly simplifies the dispersion relation as only three terms remain in the infinite
sum over n in Equation 6.27.

The dispersion relation is currentlywritten in theCartesian basis, (ex, ey, ez),
but we can further simplify the following analysis by realizing that the disper-
sion relation will be diagonal in the circular basis, (e−, e+, ez), where e− =
(ex − iey)/

√
2 and e+ = (ex + iey)/

√
2. The change of basis proceeds in the

same way as in Ichimaru (1973) but we consider here a Vlasov-fluid plasma with
∆ 6= 0. We introduce the unitary matrix (equation 5.26 in Ichimaru 1973)

U = 1√
2


1 −i 0
−i 1 0
0 0

√
2

, (7.5)

which has the property that

U ·


Ex

Ey

Ez

 =


Ex−iEy√

2
Ey−iEx√

2
Ez

 , (7.6)

i.e., it transforms linearly polarized modes into circularly polarized modes. Note
that U is unitary such that U† ·U = 1 and U ·U† = 1 where U† is the Hermitian
conjugate of U. Transformation of the unit vectors are given by U · ex = e−,
U · ey = e+ and U · ez = ez. We can use U to transform the dispersion relation
as

U ·D ·U† =


D− 0 0
0 D+ 0
0 0 D‖

, (7.7)

and obtain a diagonal dispersion tensor which factorizes into three independent
dispersion relations D− = 0, D+ = 0 and D‖ = 0.
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We find that

U ·
(
k21− kk

)
·U† v

2
a

Ω2 =
k2
‖v

2
a

Ω2


1 0 0
0 1 0
0 0 0

 , (7.8)

such that the three dispersion relations are given by

D− =
k2
‖v

2
a

Ω2 + Λi,− + Λe,− = 0 , (7.9)

D+ =
k2
‖v

2
a

Ω2 + Λi,+ + Λe,+ = 0 , (7.10)

D‖ = Λi,‖ + Λe,‖ = 0 , (7.11)

where

Λi,± = ζ0
ζ±1

[1−W (ζ±1)]−∆W (ζ±1) , (7.12)

Λi,‖ = −ζ2
0 (1 + ∆)

[
W (ζ0)− ∆

(1 + ∆)2

]
, (7.13)

Λe,± = ±ωΩ , (7.14)

Λe,‖ = − ω2

k2
‖c

2
s

. (7.15)

We can write down the dispersion relations by using the definition of ζn given in
Equation 6.24. We obtain

D∓ =
k2
‖v

2
a

Ω2 + ω

ω ± Ω

[
1−W

(
ω ± Ω
k‖vt,‖

)]
−∆W

(
ω ± Ω
k‖vt,‖

)
∓ ω

Ω = 0,

(7.16)

D‖ =
(

ω

k‖vt,‖

)2

(1 + ∆)
[
W

(
ω

k‖vt,‖

)
− ∆

(1 + ∆)2

]
+ ω2

k2
‖c

2
s

= 0.

(7.17)

The solutions to Equation 7.16 are left (D−) and right (D+) hand polarized waves
when ω > 0 (and the other way around when ω < 0).
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If we set ∆ = 0, i.e., no temperature anisotropy, and subsequently consider
the cold ion limit we obtain2

D∓ =
k2
‖v

2
a

Ω2 + ω

ω ± Ω ∓
ω

Ω = 0 . (7.18)

The solutions to Equation 7.18 are the whistler, ω(r)
± , and ion-cyclotron, ω(l)

± , so-
lutions found for Hall MHD in Chapter 4 and given in Equations 4.14 and 4.15,
respectively. Specifically, the solutions to the cold D− dispersion relation are ω(l)

−

(ion-cyclotron) and ω(r)
+ (whistler) and the solutions to the cold D+ dispersion

relation are ω(r)
− (whistler) and ω(l)

+ (ion-cyclotron). If we restrict ourselves to
Re(ω) > 0 then the D− branch will correspond to whistler modes and the D+

branch will correspond to ion-cyclotron modes.
The longitudinal dispersion relation given by Equation 7.17 describes ion-

acoustic waves propagating parallel to the magnetic field. If we set∆ = 0 it reduces
to

D‖ = W

(
ω

k‖vt,‖

)
+
v2
t,‖
c2
s

= 0 . (7.19)

The solution to this dispersion relation is ion-acoustic waves subject to ion Landau
damping. The magnetic field does not modify the properties of this wave due to
the parallel and longitudinal propagation. The derivation of Equation 7.19 can be
done without using the full machinery developed here and we derive Equation
7.19 in a much simpler way in Chapter 11 where we discuss the physics of Landau
damping and obtain the damping rates using PIC simulations.

In the following we will discuss some of the instabilities that can occur in plas-
mas where the temperature is anisotropic. Instability thresholds for these instabil-
ities often depend on the ratio of thermal to magnetic pressure. For this reason, it
is customary to introduce the parallel and perpendicular βs as

β‖ = 2
v2
t,‖
v2
a

, (7.20)

2i.e., we take the large argument expansion of the W function where W → 0. See Appendix
A.4.
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β⊥ = 2
v2
t,⊥
v2
a

. (7.21)

We note that the temperature anisotropy is related to β‖ and β⊥ by∆ = β⊥/β‖−1
and that ζn, defined in Equation 6.24, can be written as

ζn = ω/Ω− n
k‖va/Ω

√
2
β‖

, (7.22)

in terms of β‖.

7.1.1 Parallel firehose instability

The firehose instability (Rosenbluth, 1956; Chandrasekhar, Kaufman, and Wat-
son, 1958; Parker, 1958; Vedenov and Sagdeev, 1958; Davidson and Völk, 1968)
occurs in plasmas with anisotropic velocity distributions such that the parallel
temperature is larger than the perpendicular temperature. The basic physical prin-
ciple driving the instability is that a magnetic flux tube suffering a slight bend
will go unstable if the parallel pressure, p‖, exceeds the perpendicular pressure,
p⊥, and the restoring force from magnetic tension. Instability is predicted when
(Treumann and Baumjohann, 1997)

∆ < − 2
β‖

. (7.23)

The firehose instability is predicted by Braginskii MHD where it however suffers
from a UV-catastrophe, i.e., its growth rate is proportional to the wavenumber,
k‖, and grows without bound (Schekochihin et al., 2005). When finite Larmor
radii (FLR) effects are included in the dispersion relation, as in Equation 7.16, this
problem is eliminated.

A numerical solution to Equation 7.16 for the parameters β‖ = 4, β⊥ = 1,
i.e., ∆ = −3/4, is shown in Figure 7.1. The positive imaginary part (left panel)
indicates that we are indeed dealing with an instability, the parallel firehose in-
stability. The peak in growth rate occurs at k‖va/Ω = 0.37 and has a value of
Im(ω)/Ω = 0.189. We use this information to initialize a simulation of the par-
allel firehose instability in Chapter 12, see Figure 12.5. The electron temperature
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Figure 7.1: Growth rate and frequency of the parallel firehose instability for β‖ = 4
and β⊥ = 1 (∆ = −3/4).

does not influence the linear theory for this instability. The parallel firehose insta-
bility is an overstability, as seen in Figure 7.1. We find excellent agreement with
the publicly available Vlasov-fluid dispersion relation solver HYDROS (Told et al.
2016, see their figure 1).

7.1.2 Ion-cyclotron instability

The ion-cyclotron instability (Kennel and Petschek, 1966; Davidson and Ogden,
1975) occurs when the perpendicular temperature is greater than the parallel tem-
perature. The instability happens when a left hand polarized wave propagating
along the magnetic field has a frequency that coincides, i.e., is resonant, with the
gyration frequency of the ions. Due to the difference in the sense of rotation for
electrons and ions, this resonance happens between the left-hand polarized wave
for the ion cyclotron instability while the electron cyclotron instability happens
due to a resonance with a right hand polarized wave, see, e.g., Treumann and
Baumjohann (1997).

Resonance is however not sufficient for instability as this can also lead to ion-
cyclotron damping (coming up next). The ion-cyclotron instability also requires
that the distribution function is such that there are more particles moving at a
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Figure 7.2: Growth rate of the ion-cyclotron instability with β‖ = 1 and β⊥ = 4
(∆ = 3). Blue solid lines found using Vlasov-fluid theory and the dashed orange
lines found using Vlasov ions and electrons.

higher speed than the phase velocity of the wave, leading to deceleration of the
particles while feeding energy into the wave. A good illustration of this can be
found on page 106 in Treumann and Baumjohann (1997).

We find that theD− branch3 of Equation 7.16 is unstable to the ion-cyclotron
instability when T⊥ > T‖ (∆ > 0). The numerical solution for β‖ = 1 and
β⊥ = 4 (∆ = 3) is shown in Figure 7.2. In this figure the blue solid lines are
the solution to the D− branch of Equation 7.2 and the orange dashed line is the
solution to Equation 5.30. The latter solution assumes kinetic, isotropic electrons
with the same temperature as the parallel ion temperature, i.e., Te = T‖, and a
mass ratio between electrons and ions of mi/me = 1836. The full Vlasov-Vlasov
solution was found by using the general dispersion solver that we describe in Sec-
tion 7.2. We find in both cases that the maximum growth rate is γ/Ω = 0.28 and
occurs at k‖va/Ω = 0.72. We also note that we again find excellent agreement
with HYDROS (Told et al. 2016, see their figure 2). A simulation which shows
the overstable nature of the ion-cyclotron instability, is presented in Figure 12.4
in Chapter 12.

3More specifically, we find that the D− (D+ ) branch is unstable for ω > 0 (ω < 0). Both
correspond to left-handed ion-cyclotron waves, propagating in opposite directions.
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Figure 7.3: Ion-cyclotron damping for β = 5.

7.1.3 Ion-cyclotron damping

We consider a hot, but this time isotropic β = β‖ = β⊥, plasma. When the
distribution function is such that there are more particles moving at a slower speed
than the phase velocity of the wave, the particles will be accelerated by the wave
while removing energy from it. This leads to damping of the wave, called ion-
cyclotron damping. We show a numerical solution for β = 5 in Figure 7.3. The
maximal damping rate is γ/Ω = 0.41 and occurs at k‖va/Ω = 1.34. We test the
ability of our hybrid code to model ion-cyclotron damping in Chapter 12.

7.2 General Vlasov-fluid dispersion relation

In the previous section we looked at a specific limit, where k = k‖, of the dis-
persion relation for a Vlasov-fluid plasma. The general dispersion relation given
by Equation 5.29 has an infinite sum when k = k⊥ex + k‖ez. While the disper-
sion relation is formidable in this case it is still possible to solve it numerically.
We have implemented such a general dispersion solver which can be used to solve
the dispersion relation for both a Vlasov-Vlasov (kinetic ions and electrons) as
given by Equation 5.30 and a Vlasov-fluid plasma as given by Equation 5.29. There
are already a number of plasma dispersion solvers available for the Vlasov-Vlasov
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plasma, see, e.g., Roennmark (1982), Astfalk, Görler, and Jenko (2015), and Xie
and Xiao (2016), but there is, to our knowledge, only one that solves the general4

Vlasov-fluid dispersion relation (Told et al., 2016). In their paper, entitled “A lin-
ear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma
physics,” the authors derive the Vlasov-fluid dispersion relation using the approach
in Kazeminezhad et al. (1992). We have used a different approach where the dis-
persion relation is given in terms of the conductivity tensor (Chapters 5 and 6).
Told et al. (2016) have made their dispersion relation solver publicly available and
we have benefited from being able to compare with their solver.

The key ingredient in our dispersion solver is a Cython (Behnel et al., 2011)
implementation of Equation 6.27 for the species dependent response tensor, Λs.
This function can be called for each species for subsequent summation in order to
obtain σi when solving the Vlasov-fluid dispersion relation or σ when solving the
Vlasov-Vlasov dispersion relation. The main advantage of this approach is that we
can reuse this function for both the Vlasov-fluid and the Vlasov-Vlasov dispersion
relation solvers.

The solution to the dispersion relations is then found by passing the determi-
nant of the dispersion tensor to the Scipy (Jones, Oliphant, and Peterson, 2001-
2017) implementation of the Newton-Raphson method. Our solver has the limi-
tation that it needs an initial guess for ω. This is a general problem for plasma dis-
persion solvers5. Initial guesses can be made using solutions to the cold plasma dis-
persion relations or known approximate solutions. Once a solution, ω0, is known,
the solver uses this solution to find solutions close in parameter space, e.g., the so-
lution ω0 toD(ω0, k‖, k⊥) = 0will often be a good guess when solvingD(ω1, k‖+
δk‖, k⊥) = 0 for ω1, as long as δk‖ is small. This seems sufficiently efficient and
we have not implemented quadratic polynomial extrapolation of the solutions as
in DSHARK (Astfalk, Görler, and Jenko, 2015).

4Note however that Heinemann and Quataert (2014) solves the parallel (k = k‖ ) Vlasov-fluid
dispersion relation in the shearing sheet.

5One interesting exception is the dispersion solver of Xie and Xiao (2016) which uses a J -pole
expansion of the plasma dispersion function in order to reduce the dispersion relation to a matrix
eigenvalue problem. This method is not as accurate (especially for damped modes) but it is able
to find all the solutions of the dispersion relation in one go without initial guesses. An especially
promising idea, put forward in Xie and Xiao (2016), is to use their method to calculate solutions
and then use a conventional solver to improve the accuracy.
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We use the Scipy implementation of the Faddeeva function (see, e.g., Poppe
and Wijers 1990), w(z), to compute Ichimaru’s plasma dispersion function as

W (z) = 1 + iz
√
π/2 w(z/

√
2) , (7.24)

as well as the Scipy implementation of the exponentially scaled modified Bessel
function of the first kind, i.e., Γn(λ). The infinite sum over n is truncated to∑N
n=−N where N = 1000 but the summation stops early if deemed converged,

i.e., if the relative changes in the components of the tensor are all less than 10−16.
All the kinetic physics, and the computational bottleneck, is contained in this
Cython level calculation of Λs and the rest of the solver is implemented using
object-oriented Python.

In the following, we use the general dispersion relation solver to calculate
growth rates of the oblique firehose instability and the mirror instability. Solu-
tions from the solver are used to compare with simulations of the parallel and
oblique firehose instabilities in Figure 12.6 in Chapter 12. We have also used the
solver to calculate the frequencies of ion Bernstein modes in order to compare
with the simulation presented in Figure 12.7 in Chapter 12.

7.2.1 Oblique firehose instability

Anewkinetic instabilitywas found byHellinger andMatsumoto (2000) for oblique
propagation. While the parallel firehose instability is a destabilization of whistler
waves, this new oblique instability is a destabilization of the Alfvén wave. We
adopt their convention of calling these two distinct instabilities, whistler fire-
hose and Alfvén firehose. Using the plasma dispersion solver we can calculate
the growth rate as a function of the wavenumber, k, and the inclination of the
wavevector with respect to the background magnetic field, θ, i.e., k‖ = k cos θ
and k⊥ = k sin θ. We use β‖ = 2.8 and β⊥ = 0.4β‖ in order to produce Fig-
ure 7.4 in which the parallel firehose instability is located at θ = 0. This figure
can be directly compared with figure 4 in Hellinger and Matsumoto (2000) who
used almost the same parameters6. The maximum growth rate for the Alfvén fire-

6We have set Te = 0 in the calculation while Hellinger and Matsumoto (2000) used βe =
2c2

s/v
2
a = 0.5. Hellinger and Matsumoto (2000) found a maximum growth rate of γ/Ω = 0.59
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Figure 7.4: Contour plot of the growth rates for a plasma with β‖ = 2.8 and
β⊥ = 0.4β‖. The two instabilities are the whistler (parallel) firehose instability
and the Alfvén (oblique) firehose instability. The maximum growth rate of the
latter is indicated with a red cross.

hose instability is found at kva/Ω = 0.45 and θ = 54 deg and has a value of
γ/Ω = 0.575. It is indicated in the figure with a red cross.

One-dimensional simulations of the whistler and Alfvén firehose instabilities
have been presented in Hellinger and Matsumoto (2000). Two-dimensional sim-
ulations where both the whistler and Alfvén firehose instabilities are present at
the same time have also been presented by Hellinger and Matsumoto (2001) and
Muñoz et al. (2016). The Alfvén firehose instability has been found to be even
more efficient at isotropizing the temperature anisotropy than the whistler fire-
hose instability. We present 1D simulations of the whistler and Alfvén firehose
instabilities in Figure 12.6 and a 2D simulation in Figure 12.11 in Chapter 12.

7.2.2 Ion-cyclotron and mirror instabilities

Themirror instability (Chandrasekhar, Kaufman, andWatson, 1958; Barnes, 1966;
Hasegawa, 1969; Hall, 1979) is, like the firehose instability, an instability that feeds

which is slightly higher than the value we find. This is consistent with the discussion in Hellinger
and Matsumoto (2000) stating that the growth rate of the Alfvén firehose instability increases with
electron temperature. Our general plasma dispersion solver is still work in progress and we have
unfortunately not been able to find sensible solutions with Te 6= 0.
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Figure 7.5: Contour plot of the growth rates for a plasma with β‖ = 1 and β⊥ =
4. The mode with maximal growth rate with k = k‖ is recognized as the ion-
cyclotron instability by comparing with Figure 7.2. The other mode is the mirror
instability which has its maximum growth rate indicated with a red cross.

off anisotropy in the velocity distribution. We have already discussed this insta-
bility in the context of the intracluster medium in Chapter 3 where we used the
instability criterion given by Equation 2.42 to limit the maximum viscous flux in
the Braginskii MHD equations.

In this section we use the plasma dispersion solver we have developed to calcu-
late the growth rate of the mirror instability. As mentioned previously, the mirror
instability occurs when the perpendicular temperature exceeds the parallel temper-
ature. The mirror instability is a destabilization of a slow-mode polarized wave
which has anti-correlation between density and magnetic field strength pertur-
bation (Hasegawa, 1969). We outline the physical mechanism for the instability
as explained in Southwood and Kivelson (1993). In the fluid picture, the perpen-
dicular pressure response to a magnetic field strength perturbation is given by
(Hasegawa, 1969)

δp⊥
p⊥

=
(

1− T⊥
T‖

)
δB

B
= −∆δB

B
. (7.25)

The perturbations in perpendicular pressure and magnetic field strength are seen
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to have opposite signs if T⊥ > T‖. An increase in magnetic field strength (caused
by a compression of magnetic field lines) will then lead to a decrease in perpen-
dicular thermal pressure. It will also lead to an increase in magnetic pressure given
by BδB/µ0. If the loss in perpendicular thermal pressure outweighs the gain in
perpendicular magnetic pressure, i.e., if

δp⊥ + BδB

µ0
< 0, (7.26)

then the result will be further compression of the magnetic field lines. This in-
creases the magnetic field strength which lowers the perpendicular pressure and
so on (Southwood and Kivelson, 1993). The need for compression of field lines to
drive the instability showswhy themirror instability needs an obliquewavevector.
One can see from Equation 7.25 that Equation 7.26 is most likely to be fulfilled
if the initial thermal pressure of the plasma is higher than the magnetic pressure,
i.e., in high β plasmas. A similar argument shows how regions with decreasing
magnetic field strength will have increasing perpendicular pressure which leads
the magnetic field to blow out in the perpendicular direction. The particles in the
regions with increasing magnetic field strength will essentially be squeezed out of
those regions by the mirror force7. We can combine Equations 7.25 and 7.26 to
obtain the stability criterion for the mirror instability8

∆ >
1
β⊥

. (7.28)

While the physical picture outlined above yields the correct criterion for instabil-
ity it turns out that it is not entirely adequate. The problem is that the fluid picture
does not correctly describe resonances of particles with low parallel velocity which
Southwood and Kivelson (1993) found to play a crucial role. The growth rate of

7An explanation of the mirror force can be found in most books on plasma physics, see, e.g.,
Baumjohann and Treumann (1996) or Fitzpatrick (2014).

8This can also be written as

(1 + ∆)∆ >
1
β‖
. (7.27)

For β‖ � 1 the mirror instability is active when |∆| � 1 and the factor (1 + ∆) can be ignored,
yielding Equation 2.41.
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General Vlasov-fluid dispersion relation

the mirror instability is found to be proportional to k‖ within the framework of
Braginskii MHD (Schekochihin et al., 2005) and it thus also requires the inclusion
of FLR effects in order to avoid an UV-catastrophe. It it thus necessary to treat and
understand the mirror instability using kinetic theory (Southwood and Kivelson,
1993).

We calculate the growth rate of the mirror instability as a function of the
wavenumber, k, and the inclination of the wavevector with respect to the back-
ground magnetic field, θ. We use the parameters β‖ = 1 and β⊥ = 4 and present
the resulting growth rate map in Figure 7.5. For these parameters, the maximum
growth rate occurs along θ = 0. This region of instability is recognized to be the
ion-cyclotron instability by comparing with Figure 7.2. The other distinct region
in Figure 7.5 is the mirror instability. This instability is seen to have its maximum
growth rate at θ = 48 deg and kva/Ω = 0.68 with a maximum growth rate of
γ/Ω = 0.17.
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7. Solutions to the Vlasov and Vlasov-fluid dispersion relations
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Chapter 8

Introduction to particle-in-cell
simulations

In this chapter we introduce the basic principles of particle-in-cell (PIC) simula-
tions of collisionless plasmas (Hockney and Eastwood, 1988; Birdsall and Lang-
don, 1991). We are interested in solving the Vlasov-fluid equations (Equations
2.3, 2.8 and 2.15, see Section 2.1) which describe the evolution of the phase-space
distribution of the particles and the electromagnetic fields.

The Vlasov-fluid equations can be solved using Eulerian grid methods or the
particle-in-cell method. A comparison of the two methods for plasma turbulence
studies was presented in Cerri et al. (2017). Examples of codes that use grid based
methods include theHVM code (Mangeney et al., 2002; Valentini et al., 2007) and
the Vlasiator code (Alfthan et al., 2014). These codes face the challenge that the
number of cells in a simulation scale with Nd where d is the dimension of the
phase-space and N is the number of grid cells along each dimension1. While dif-
ferent methods have been developed for bypassing this fundamental problem, e.g.
the Vlasiator code limits the number of cells in velocity space in spatial regions of
little interest, these simulations are still extremely expensive. The main advantage
of the grid based method is that it does not suffer from the statistical noise that
inevitably arises when using particle methods (due to a finite number of particles,
see also Chapter 10).

1Here considered to be the same for each dimension for illustrative purposes.
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8. Introduction to particle-in-cell simulations

We have developed a code using particle methods. The advantage of the par-
ticle method compared to the grid based method is its simplicity and the lower
computational cost. In this approach the evolution of the phase-space distribution
function is studied by following the evolution of quasi-particles2. These quasi-
particles obey the same equations of motion as real, physical particles do, which
is the reason for the terminology (see, e.g., Lapenta 2013). For brevity we will
often simply refer to particles without explicitly stating that we are in fact dealing
with quasi-particles which represent a phase-space volume.

In the general case, the particle phase-space is 6-dimensional (three spatial di-
mensions and three velocity dimensions). We have developed a code which only
evolves five of these phase-space dimensions, namely x, y, vx, vy and vz. The re-
duction of the phase-space is done by assuming that there is no spatial variation
of variables along the z-direction. This means that field quantities can depend ex-
plicitly on the x and y coordinate but not on z. We do however retain all three
components of the electromagnetic fields. A code that evolves two spatial dimen-
sions but all three velocity components of the particles and all three components
of the electromagnetic fields is referred to as a 2D-3V code.

We now proceed to explain why it is useful to include a grid even when us-
ing a particle method. Given a collection of Np particles we could in principle
calculate the force on each of them by adding up the forces from the electromag-
netic fields produced by all the other particles. This many-body problem would
not require a grid. It would however require ∼ N2

p force calculations so that the
computational effort quickly grows large. It turns out that uncorrelated systems
can be modeled much more efficiently by introducing a grid upon which the field
equations, i.e., Equations 2.8 and 2.15, are solved (Hockney and Eastwood, 1988).
This combination of using particles and a grid is called the particle-in-cell (PIC)
method. The computational cost then scales with ∼ Np + N2 where N2 is the
number of grid cells for a code with two spatial dimensions. For weakly coupled
systems Np � N , and the computational cost will be dominated by the effort
used on updating the particle positions and velocities. It is thus advantageous to
use a grid because the computational cost then scales linearly with the number of

2In the literature, these are also sometimes referred to as super-particles, marker particles or
macro-particles.
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Figure 8.1: Flowchart for the PIC method.

particles instead of quadratically.
The PIC method consists of four distinct steps which are repeated in a cyclic

manner, as illustrated in Figure 8.1. We briefly describe the four different steps
in this chapter. These are i) the update of particle and positions and velocities
(Section 8.1), ii) the deposition of charge and currents onto the grid (Section 8.2)
iii) the solution of the field equations (Section 8.3) and iv) the interpolation of
electric and magnetic fields to the particle positions (Section 8.2).

8.1 Particle mover

We use the Boris method (Boris, 1970) to update the positions and velocities of
particles which are influenced by the Lorentz force due to an electric field,E, and
a magnetic field, B. In order to do so, we need the electric and magnetic fields
at the location of the particles. These quantities are however only known on the
grid and interpolation is therefore required (see Section 8.2).

The equations of motion for the quasi-particles are3

ms
dv

dt
= es(E + v ×B) , (8.1)

3That the quasi-particles obey the same equations of motion as real physical particles is shown in
e.g. Lapenta (2013). The magnetic and electric fields are here understood to be interpolated values
onto the location of the particle, see Section 8.2.
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dx

dt
= v , (8.2)

for which the Lorentz force is approximated by (Birdsall and Langdon, 1991)

vn+1/2 − vn−1/2

∆t = es
ms

(
En + vn+1/2 + vn−1/2

2 ×Bn

)
, (8.3)

xn+1 − xn
∆t = vn+1/2 , (8.4)

where n denotes the time step, corresponding to the time t = n∆t, where ∆t is
the increment in time per time step. Notice that the values of the particle positions
are defined at integer time steps while the velocities are defined at half-integer time
steps. This method, called leapfrog from its similarity to the children’s game, is
illustrated in Figure 8.2. Equation 8.3 is implicit as vn+1/2 appears on the RHS of
the equation. The equation can in principle be solved by inverting a 3× 3 matrix.
A matrix inversion is however slow compared to the Boris method (Boris, 1970)
that we outline below, following the description in Birdsall and Langdon (1991).
First, calculate the vector, v−, given by

v− = vn−1/2 + es∆t
2ms

En , (8.5)

and use it to obtain

v′ = v− + v− × d , (8.6)

where

d = es∆t
2ms

Bn. (8.7)

Then calculate

v+ = v− + 2
1 + d2v

′ × d , (8.8)
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n∆t (n+ 1)∆t (n+ 2)∆t(n− 1)∆t

x v

Figure 8.2: Illustration of the leapfrog method. The particle positions, x, and
velocities, v, are defined at integer and half-integer time steps, respectively.

and use the value of v+ to finally obtain vn+1/2 as

vn+1/2 = v+ + es∆t
2ms

En . (8.9)

The Boris push updates the particle velocity from time step n− 1/2 to time step
n + 1/2 by using the values of the electric and magnetic fields at the location of
the particle at time step n. This can summarized as

vn+1/2 = M(En,Bn,xn) · vn−1/2 , (8.10)

where M represents the Boris update of the velocity outlined above. The update
of the velocity is often referred to as a kick. The update of the position is much
simpler

xn+1 = xn + ∆tvn+1/2, (8.11)

and is referred to as a drift.

8.2 Interpolation

Interpolation is used both for depositing charge and current density of the ions
onto the grid and for interpolating the values of the electric and magnetic fields
onto the locations of the particles. In PIC literature the former is often referred
to as the scatter step and the latter is referred to as the gather step.

We have implemented two different interpolation schemes called cloud-in-cell
(CIC) and triangular-shaped-cloud (TSC), respectively. These names refer to the
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interpretation of the quasi-particles as a charged cloud. The shape of these func-
tions are given by the shape functions, S(x), in Hockney and Eastwood (1988).
The assignment functions,W (x), are given by the integral of the shape functions
and tell how much charge (or current) a particle contributes to each cell4. The
one-dimensional versions of the CIC and TSC assignment functions are given by
(Hockney and Eastwood, 1988)

W (x) =
{

1− |x|
0

|x| < 1
otherwise

, (8.12)

and

W (x) =


3
4 − x

2 |x| < 1/2
1
2

(3
2 − |x|

)2
1/2 < |x| < 3/2

0 otherwise

, (8.13)

respectively. In two dimensions the charge is assigned according to the product of
the one-dimensional assignment functionsW (x) = W (x)W (y).

We can write the charge and current deposition as

ρg =
∑
s

wses

Np∑
p

W (xp − xg) , (8.14)

Jg =
∑
s

wses

Np∑
p

vpW (xp − xg) , (8.15)

where the sums extend over all particles, Np, and all ion particle species, s. Here
ws is a (per-species) weight factor given byws = nsNg/Np where ns is the number
density of physical particles of species s and Ng is the total number of grid cells.
In Equations 8.14 and 8.15, the particle positions, xp, and the positions of the
grid cells, xg, are measured in units of the grid cell length. The sources, ρ and J ,
are needed for the field solver (Section 8.3) and are also useful diagnostics when

4The assignment function, W (x), should not be confused with Ichimaru’s plasma dispersion
function,W (z).
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analyzing simulations.
Interpolation of magnetic and electric fields onto the location of a given par-

ticle is needed for the Boris push. The fields are here given by a sum over the grid
cells

Ep =
Ng∑
g

W (xp − xg)Eg , (8.16)

Bp =
Ng∑
g

W (xp − xg)Bg . (8.17)

Not using the same interpolation scheme for the gather as for the scatter can
lead to self-forces, i.e., the fields produced by the charge and current of a parti-
cle can end up exerting a force on itself (Hockney and Eastwood, 1988). This
unphysical effect will lead to a change in the total momentum of the particles in
the simulation. In order to avoid this problem we always use the same method
(CIC or TSC) for source deposition and force interpolation. This is called the
momentum-conserving method as it preserves the total momentum to machine
precision (Hockney and Eastwood, 1988).

8.3 Field solver

Solving the field equations, Faraday’s law and Ohm’s law given by Equations 2.8
and 2.15, requires knowledge of the ion sources (density and current, found using
Equations 8.14 and 8.15) and the magnetic field at the current time step.

The solution of the field equations depends on the time staggering (whether
the fields are defined at integer or half-integer time steps) and the spatial staggering
(fields can be defined at either cell corners or cell centers). These issues are dis-
cussed in detail in Chapter 9. For the time being we simply note that the update of
the magnetic field depends on the electric field through Faraday’s law (Equation
2.8) and that the electric field, in turn, depends on the electron pressure, density
and current (Ohm’s law, Equation 2.15). The former two can be found from the
ion density (since we assume quasi-neutrality) and the latter can be found from
a combination of Ampére’s law for the total current (Equation 2.9, where the
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magnetic field is needed) and the ion current.

8.4 A few implementation details

The code we have developed uses high-level language features of Python (Rossum,
1995) while maintaining high performance by using the low-level language C
(Kernighan, 1988) for the most computationally intensive parts. The interfacing
between Python and the high performance code is done using Cython (Behnel
et al., 2011). We note that the most computationally intensive part will almost
always be the operations related to the particles, unless very few particles per cell
are used.

Development of the Python code has benefited greatly from experience gained
while working on the PhotonPlasma code (Haugbølle, Frederiksen, andNordlund,
2013). Similarly, access to an electrostatic, so-called skeleton code developed at the
University of California Los Angeles (Decyk, 1995; Decyk, 2016) has enabled us
to make rapid progress. The skeleton terminology is explained by Decyk (1995)
in the following way:

These codes have been deliberately kept to a minimum, but they in-
clude all the essential pieces for which algorithms need to be devel-
oped. Thus the codes advance the particles, deposit their charge, and
solve for the fields. Only one particle species is kept and the only
diagnostic used is the particle and field energies. The codes use the
electrostatic approximation and magnetic fields are neglected.

The skeleton code made available by Decyk (1995) thus contains the essential ma-
chinery for an electrostatic particle-in-cell code such as a particle mover, a charge
deposition routine and a spectral solver for Poisson’s equation. Most importantly,
it contains an implementation for moving particles between different processors
using message passing interface (MPI, Forum 1993). The hybrid code presented
in this thesis uses this implementation of particle communication as well as a par-
ticle sorting routine. The code also uses MPI for the field equations5. Here we

5We have also experimented withOpenMP (Dagum andMenon, 1998) but at the time of writing
this feature is turned off.
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use guard layers on each side of each local grid and the Python package mpi4py
(Dalcín et al., 2008) for communicating them across processors. This includes the
charge and current densities for which a step where the charge is added (not just
copied) is needed.

It is common knowledge that the benefits of using Python or other high-level
languages comes at the cost of computational efficiency. This common knowledge
is however being challenged by several projects which show that Python can be
used for high performance computing (HPC). These projects include REBOUND
(Rein and Liu, 2012), anN -body code for collisional dynamics; FBPIC (Lehe et al.,
2016), a relativistic PIC code used to study plasma wake-field acceleration;Dedalus
(Burns et al., In preparation), a framework for solving initial, boundary and eigen-
value problems and spectralDNS (Mortensen and Langtangen, 2016), a spectral hy-
drodynamics code used for direct numerical simulations of turbulence. The latter
code, spectralDNS, has been found to match the performance of an equivalent code
in C++ even when running on several thousand cores (Mortensen and Langtan-
gen, 2016).

In contrast to these projects, the 2D code that we present in this thesis has not
yet been thoroughly optimized and tested for efficiency. We have however made
a simple comparison between the performance of the skeleton code by Decyk
(1995) (written in C) and a Python version of the skeleton code. The Python
code works by importing the functions in the C code using Cython (Behnel et
al., 2011) in order to be able to call them within Python. We present a speed
comparison in Figure 8.3. In the upper panel of this figure we show the execution
time of the particle move (force interpolation, Boris push, deposition and MPI
communication) for the two different versions of the code. The setup is a grid
with resolution nx = 512 and ny = 512N where N is the number of processors
used. We keep the number of particles per cell fixed at 36. Since we increase the
computational load in proportion to the number of processors the execution time
should be constant6. However, we observe an increase in the execution time from
roughly 20 seconds when using 1 processor to roughly 40 seconds when using 256
processors. We also observe an abrupt increase in the execution time when using

6This is a weak scaling test.
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Figure 8.3: Comparison of performance between a C version and a Python version
of the skeleton code made available by Decyk (1995). Upper panel: The execution
time of the particle move. Lower panel: The ratio of the Python execution time
to the C execution time.

32 processors and more. We attribute this to the architecture of the computer
cluster which has 20 processors (with shared memory) per node. This indicates
that the performance of the MPI communication between different nodes could
be improved. We note that this trend is seen for both the Python and the C code.
The loss in performance incurred by using Python instead of C can be estimated
by calculating the ratio of the execution times. This is shown in the lower panel
of Figure 8.3. The Python code is not more than 30% slower and many of the
simulations are only 5% slower. This preliminary test encouraged us to continue
developing a hybrid code in Python.

One of the key advantages of using Python is that it is possible to plot and
animate different physical quantities while the code is running. This is especially
useful for debugging and showcasing tests. Data storage is however still needed
for analyzing computationally intensive simulations. We use the HDF5 format
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(The HDF Group, 1997-2017) via the corresponding Python package h5py (Col-
lette, 2013) to store both field and particle data with one file per MPI process at
each requested time step. The inconvenience of having the data per processor is
eliminated by a dedicated Python script which combines them. The resulting data
can be read by visualization packages such as Visit (Childs et al., 2012) or h5py
(Collette, 2013). Data analysis is performed with Python scripts with Matplotlib
(Hunter, 2007) or with IPython (Perez and Granger, 2007) for interactively ana-
lyzing the data.

Another key advantage, or at least convenience, obtained by using a high-level
language such as Python is that we have easy access to numerical libraries such as
Numpy (Oliphant, 2007) and SciPy (Jones, Oliphant, and Peterson, 2001-2017).
As an example, this has been useful for initializing a quietMaxwellian (see Chapter
10) where the inverse error function is required or for initializing an eigenmode
by calling the dispersion relation solvers discussed in Chapter 4 and 7.

Finally, we note that the development of the code has benefited greatly from
using Git version control (Chacon, 2009) and continuous integration (CI), a de-
velopment method where changes to the code results in the test suite running on
a remote server.
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Chapter 9

Numerical methods

Particle-in-cell codes generally have time staggering of particle positions and veloc-
ities as well as electromagnetic fields (B andE ) and they also benefit from using a
staggered grid in space for the field quantities (the electromagnetic fields and their
sources). There are several options for both spatial staggering and time stepping
procedures and different codes, such as CAMELIA (Matthews, 1994), DHybrid
(Gargaté et al., 2007), AIKEF (Müller et al., 2011), Pegasus (Kunz, Stone, and Bai,
2014), CHIEF (Muñoz et al., 2016) and AMITIS (Fatemi et al., 2017), use different
approaches. In this chapter we explain how we have chosen to stagger the grid
quantities and the finite difference scheme that we employ. We also discuss two
different methods for updating the equations in time. These are the predictor-
corrector method and the Horowitz method, both of which are implemented in
our code.

9.1 Staggering

The following discussion details how we have implemented spatial staggering: all
components of E are located at cell centers (i, j ) and all components of B are
located at cell corners (i + 1/2, j + 1/2). We also choose to deposit both the
charge density and all components of the ion current density at cell centers.

This grid structure is outlined in Figure 9.1. In this figure cell centers, where
E, Js and ρ are stored, are indicated with an X and cell corners, where B is
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stored, are indicated with full circles. The thick solid line indicates the physical
boundaries of the simulation domain. The X’s and solid circles shown in blue are
active cells, while the X’s and solid circles shown in orange are ghost cells (also
interchangeably called guard layers). The example shown in Figure 9.1 has a single
guard layer on each side. This is sufficient for performing simulations with CIC
interpolation and a second order finite difference scheme. We add one more guard
layer on each side when TSC interpolation is used.

For a simulation with a single MPI process the physical boundaries for the
grid in Figure 9.1 are identical to the physical boundaries of the entire simulation.
These are defined to be located at x = x0, y = y0, x = x0 + Lx and y = y0 + Ly

where x0, y0, Lx and Ly have user-defined values. This means that the first active
cell in x has its cell center values (ρ and all components of J and E ) located at
x = x0 + ∆x/2 and its cell corner value (all components of B) located at x =
x0 + ∆x. The last active cell in x has its cell center values at x = x0 +Lx−∆x/2
and its cell corner values at x = x0 + Lx.

The same considerations apply for the y-direction with the caveat that the grid
boundaries do not always concide with the physical boundaries when more than
one MPI process is used. In this case a grid as the one shown in Figure 9.1 is
created on each processor. As the MPI domain decomposition is only along the
y-direction the grid boundaries in the x-direction are still identical to the physical
boundaries1. The grid boundaries in the y-direction for the grid on each processor
are however given by y0 +LyR/N for the lower boundary and y0 +Ly(R+1)/N
for the upper boundary. Here R is the rank of the process and N is the total
number of MPI processes used.

We use MPI to communicate the values of guard layers from processor to pro-
cessor. Each grid is a Python object with many of the grid properties stored as
attributes. These are for instance lbx, lby, ubx, and uby, corresponding to the in-
dices of the first active cell at the lower edge of the domain (lbx, lby) and the first
guard layer at the upper edge of the domain (ubx, uby).

1This is a limitation of the implementation of MPI domain decomposition in the skeleton code
described in Chapter 8. Extending the MPI domain decomposition to be along both x and y is on
the list of future improvements, see Chapter 13.
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Figure 9.1: The grid layout with crosses (solid circles) indicating cell centers (cor-
ners). Blue symbols are active cells and orange symbols are guard layers. The
thick black solid line indicates the grid boundaries. In the x-direction this is al-
ways equivalent to the physical boundaries while the boundaries in the y-direction
are MPI boundaries.

9.1.1 Finite difference scheme

We use finite differences to approximate spatial derivatives. We can write the finite
difference approximations to the first order derivatives along x and y in compact
form by introducing finite difference operator notation (see for instance the ap-
pendix of Durran 2010)

δnxfi,j =
fi+n/2,j − fi−n/2,j

n∆x , (9.1)

δmyfi,j =
fi,j+m/2 − fi,j−m/2

m∆y , (9.2)
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Staggering d/dx d/dy

None δ2x δ2y
Along y δ2x〈·〉y δy
Along x δx δ2y〈·〉x
Along x and y δx〈·〉y δy〈·〉x

Table 9.1: Finite difference approximations to the derivative of a quantity depend
on the staggering of the quantity. Here we show the 8 versions of the first order
derivatives. Due to the interlaced grid only the upper and lower row are used in
our hybrid code.

and an interpolation operator with the following properties

〈fi,j〉x = 〈·〉xfi,j =
fi+1/2,j + fi−1/2,j

2 , (9.3)

〈fi,j〉y = 〈·〉yfi,j =
fi,j+1/2 + fi,j−1/2

2 . (9.4)

The resulting finite difference expressions for d/dx and d/dy are summarized in
Table 9.1. We can then introduce a finite difference approximation to the curl, ∇̃,
defined by2

∇̃ × fi,j = δy〈fzi,j〉xex − δx〈fzi,j〉yey +
(
δx〈fyi,j〉y − δy〈fxi,j〉x

)
ez , (9.5)

where f is a vector field. Note that this procedure approximates the curl of f at
(i, j) by using values of f at (i ± 1/2, j ± 1/2). Using this notation for the curl
ofB we find for Ampére’s law (Equation 2.9)

Ji,j = µ−1
0 ∇̃ ×Bi,j , (9.6)

i.e., an approximation to J at cell centers where the ion current is also deposited.
A simple subtraction of the ion current from the total current, without further
interpolation, is done to obtain the electron current, Je. In order to calculate
Je × B we do however need to interpolate B from the cell corner to the cell

2Recall that we are considering a 2D-3V setting where the fields are constant along z.
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center. Using a superscript e to indicate electron current we have

(Je ×B)i,j = Jei,j × 〈〈Bi,j〉x〉y. (9.7)

In order to have the gradient of the electron pressure approximated at cell centers,
we use the following finite difference approximation to the gradient

∇̃fi,j = δ2xfi,jex + δ2yfi,jey . (9.8)

Our finite difference approximation to Ohm’s law (Equation 2.14) can be summa-
rized as

Ei,j =
∇̃pei,j
ρei,j

−

(
µ−1

0 ∇̃ ×Bi,j −
∑
s J

s
i,j

)
× 〈〈Bi,j〉x〉y

ρei,j
. (9.9)

Finally, we use the following spatial discretization

∂Bi+1/2,j+1/2
∂t

= −∇̃ ×Ei+1/2,j+1/2. (9.10)

for Faraday’s law (Equation 2.8).

9.1.2 Divergence of B

Kunz, Stone, and Bai (2014) argue that the usage of an interlaced grid by e.g.
Horowitz, Shumaker, and Anderson (1989) and Gargaté et al. (2007) leads to pro-
duction of magnetic monopoles, i.e., that the∇ ·B = 0 constraint is not fulfilled
by the finite difference discretization of Faraday’s law when using Equation 9.10.

We believe that this critizism is unfounded, for the following reason. In order
to assess whether the divergence of B is zero to machine precision it is necessary
to specify which finite difference approximation is used as several different op-
tions exist (Tóth, 2000). We now prove that one finite discretization of ∇ · B
is identically zero on the Yee (Yee, 1966) mesh while a different finite discretiza-
tion is identically zero on the interlaced grid. We limit the discussion to the 2D
application we have in mind but provide the general 3D proof in Appendix A.7.
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For the Yee mesh3 Faraday’s law can be written as

∂Bx
i+1/2,j
∂t

= −δyEzi+1/2,j , (9.11)

∂By
i,j+1/2
∂t

= δxE
z
i,j+1/2 . (9.12)

If we use the finite difference approximation to ∇ ·B = 0 given by

(∇ ·B)i,j = δxB
x
i,j + δyB

y
i,j , (9.13)

to approximate the divergence ofB at cell centers, thenwe see that the time deriva-
tive of ∇ ·B is (

∇ · ∂B
∂t

)
i,j

= −δxδyEzi,j + δyδxE
z
i,j . (9.14)

This is identically zero (tomachine precision) as the δx and δy operators commute.
The approximation to ∇ · B given by Equation 9.13 does not work on the

interlaced grid. A natural finite difference approximation to ∇ · B = 0 at cell
centers is in this case instead given by

∇̃ ·Bi,j = δx〈Bx
i,j〉y + δy〈By

i,j〉x . (9.15)

This approximation to ∇ ·B, combined with Equation 9.10, is zero to machine
precision. We can show this using the notation introduced earlier. For the inter-
laced mesh Faraday’s law can be written as

∂Bx
i+1/2,j+1/2
∂t

= −δy〈Ezi+1/2,j+1/2〉x , (9.16)

∂By
i+1/2,j+1/2
∂t

= δx〈Ezi+1/2,j+1/2〉y , (9.17)

3The Yee mesh is here defined to have Bx located at (i+ 1/2, j), By located at (i, j + 1/2) and
Ez located at (i+ 1/2, j + 1/2).
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such that the time derivative of ∇ ·B at cell centers is given by

∇̃ · ∂Bi,j

∂t
= δx〈−δy〈Ezi,j〉x〉y + δy〈δx〈Ezi,j〉y〉x

= δxδy〈·〉x〈·〉y(−1 + 1)Ezi,j = 0 . (9.18)

Here, we have again used that all the operators commute. We can express this
more generally, by stating that the finite difference approximations to the curl and
divergence on the interlaced grid (Equations 9.5 and 9.15) have the property that4

∇̃ ·
(
∇̃ × fi,j

)
= 0 . (9.19)

We initialize non-trivial magnetic field configurations by taking the finite differ-
ence approximation to the curl of the magnetic vector potential,A, i.e.

Bi+1/2,j+1/2 = ∇̃ ×Ai+1/2,j+1/2 , (9.20)

where A is defined at cell centers. This ensures that the initial ∇̃ · Bi,j is zero.
Combining this with Equation 9.18 ensures that it also remains zero at later times.

9.2 Time stepping procedures

In this section we outline two different procedures to update the quantities of in-
terest in the simulation. The two procedures, a predictor-corrector method (Byers
et al., 1978; Harned, 1982) and an iterative field solution method (Horowitz, Shu-
maker, and Anderson, 1989) both update the magnetic and electric fields using
Faraday’s and Ohm’s laws and the particle positions and velocities using a Boris
push.

For the sake of brevity, we introduce the notation for Ohm’s law used in
Winske et al. (2003), which is a simple shorthand for the fact that the electric field
is a function of the magnetic field, charge density and ion current. The charge
density and ion current are given by the particle positions, x, and velocities, v, so

4While our present concern is a 2D code we note that this also holds for the generalization
to three dimensions for the finite difference representation of the curl and divergence such that
∇̃ ·
(
∇̃ × fi,j,k

)
= 0. See Appendix A.7.
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the dependence of Ohm’s law (defined in Equation 2.15) can be written as

E = F (B,x,v) . (9.21)

All quantities in this equation should be given at the same point in time. We also
use the shorthand for the Boris update of the velocity introduced in Equation 8.10.

The spatial discretization of the equations has been described in the previous
section and so we do not include it explicitly in the discussion in this section.

We start out by summarizing the discussion in Byers et al. (1978) and Winske
et al. (2003) regarding how it is not straightforward to compute the electric field
at the next time step. Let us assume that we know initial values for the particle
velocities and the magnetic field at time step n − 1/2 and the particle positions
and the electric field at time step n, i.e., we know the set vn−1/2,Bn−1/2, xn and
En. The goal is to calculate these values at the next time step, i.e., we need to find
vn+1/2,Bn+1/2, xn+1 andEn+1. We can proceed by calculatingB at both n and
n+ 1/2 using Faraday’s law

Bn+1/2 = Bn−1/2 −∆t∇×En , (9.22)

Bn = 1
2
(
Bn−1/2 +Bn+1/2

)
. (9.23)

The knowledge ofEn,Bn andxn is sufficient information to calculate the velocity
at n+ 1/2 using the prescription by Boris (1970)

vn+1/2 = M(En,Bn,xn) · vn−1/2 . (9.24)

Using this new velocity we can find the positions at n+ 1/2 and n+ 1 as

xn+1 = xn + ∆tvn+1/2 , (9.25)

xn+1/2 = 1
2
(
xn−1/2 + xn+1/2

)
. (9.26)

We now only need to calculate En+1. Inspection of Ohm’s law

En+1 = F (Bn+1,xn+1,vn+1) , (9.27)
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reveals that the electric field at n + 1 depends on the magnetic field and particle
positions and velocities at n+1. We already know the particle positions xn+1 and
the magnetic field,Bn+1, can be calculated using Faraday’s law5

Bn+1 = Bn −∆t∇×En+1/2 . (9.29)

The dependence of the electric field on the particle velocities at n + 1 evident
in Equation 9.27 prevents us from proceeding in a simple manner. Several meth-
ods for circumventing this problem have been invented and a good overview can
be found in Winske et al. (2003). Methods not discussed here include (but are
not limited to) the current advance method (Matthews, 1994) and a predictor-
corrector-corrector method (Kunz, Stone, and Bai, 2014). In the following two
subsections we discuss the predictor-corrector and the Horowitz method.

9.2.1 Predictor-corrector method

The predictor-corrector method as applied to hybrid codes is well explained in
Byers et al. (1978), Harned (1982) and Winske et al. (2003). Here we simply give
a brief overview of our implementation of this method.

Let us start from the point wherewe realized thatEn+1 could not be calculated
as we did not know vn+1. The predictor-corrector step solves this problem of not
being able to calculate En+1 by instead predicting its value as

Ên+1 = 2En+1/2 −En , (9.30)

where the hat denotes that it is a predicted value. From the values of vn+1/2,
Bn+1/2, xn+1 and Ên+1 we can then proceed in the same way as outlined above6

to calculate predicted values v̂n+3/2, B̂n+3/2, x̂n+3/2 at time step n+ 3/2. From
5This requires knowledge of En+1/2 which can however easily be computed as

En+1/2 = F (Bn+1/2,xn+1/2, vn+1/2) , (9.28)

and we already knowBn+1/2, xn+1/2, and vn+1/2.
6The only difference is that time step indices are incremented with one and that hats are used to

indicate that the error from not using the correct value of the electric field at n+ 1 propagates.
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these we can calculate the predicted electric field at n+ 3/2 as

Ên+3/2 = F (B̂n+3/2, x̂n+3/2, v̂n+3/2) , (9.31)

which is then used to estimate the electric field at n+ 1 as

En+1 = 1
2
(
E1/2 + Ê3/2

)
. (9.32)

This latter step is called the corrector step. The predictor-corrector method is seen
to require two particle pushes which makes it expensive.

9.2.2 Horowitz method

The second time stepping procedure that we have implemented in the code is an
iterative solution for the field equations due to Horowitz, Shumaker, and Ander-
son (1989). Compared to the predictor-corrector method, the Horowitz method
has the advantage that only a single update of the particles is needed. When a lot
of particles are used per cell, the computational cost is essentially given by the
cost to push the particles forward in time while the cost of solving the field equa-
tions is negligible. In this case it is possible to get a speedup by a factor approach-
ing 2 by using the Horowitz method instead of the predictor-corrector method.
The Horowitz method is also employed by Amano, Higashimori, and Shirakawa
(2014).

The Horowitz method works as follows: given an initial condition with par-
ticle velocities at time step n− 1/2, and positions as well as electric and magnetic
fields at time step n, we perform steps 1a to 2a as detailed below, and then repeat
steps 2b to 2e until converged.

1. Update particle positions and velocities. Deposit sources.

(a) Kick the velocities to time step n+ 1/2

vn+1/2 = M(En,Bn,xn) · vn−1/2 . (9.33)
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(b) Drift the positions by a half time step to n+ 1/2

xn+1/2 = xn + ∆t
2 v

n+1/2 . (9.34)

(c) Deposit the charge density and ion current at n+ 1/2

xn+1/2,vn+1/2 → ρn+1/2
e ,J

n+1/2
i . (9.35)

(d) Drift the position by another half time step to n+ 1

xn+1 = xn+1/2 + ∆t
2 v

n+1/2 . (9.36)

2. Iteratively solve the field equations.

(a) Initialize the iteration by setting k = 0 and En+1
k = En.

(b) Estimate the electric field at n+ 1/2 as

E
n+1/2
k = 1

2
(
En+1
k +En

)
, (9.37)

and use Faraday’s law to calculateBn+1
k+1

Bn+1
k+1 = Bn −∆t∇×En+1/2

k . (9.38)

(c) Estimate the magnetic field at n+ 1/2 as

B
n+1/2
k+1 = 1

2
(
Bn+1
k+1 +Bn

)
, (9.39)

and use Ohm’s law to calculate En+1
k+1

En+1
k+1 = −En + 2F

(
B
n+1/2
k+1 ,xn+1/2,vn+1/2

)
. (9.40)

(d) Set k = k + 1.

(e) Calculate the root-mean-squared (RMS) of the difference betweenEn+1
k+1

and En+1
k to check if converged.
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The tolerance on the RMS difference with respect to the previous iteration and
the maximum number of iterations can be set by the user. If the tolerance is not
reached within the maximum number of iterations the simulation is discontinued.
This is normally an indication that the time step is too large or that the number of
particles per cell should be increased. Horowitz, Shumaker, and Anderson (1989)
use a tolerance of 10−3 and state that they reach convergence in 4-9 iterations. We
set as the default a tolerance of 1.48× 10−8 with a maximum of 20 iterations. For
the cold tests presented in Chapter 12 convergence is reached within two itera-
tions, despite the low number of particles per cell.
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Chapter 10

Particle loading

Particle in cell simulations evolve the phase-space distribution function for each
particle species. The phase-space distribution is a probability distribution and we
therefore need to be able to generate random numbers from a variety of probabil-
ity distributions in order to initialize the simulations.

A number of different algorithms for doing so exist and many of them, such
as the uniform distribution or normal distribution, are easily accessible using
Numpy (Oliphant, 2007). Particle simulations are however easily plagued by noise
unless a significant amount of particles are used per computational cell. For in-
stance, the noise in the density for a plasma with uniform density ρ is ρ/

√
Np if

one initializes the positions of the particles by generating random numbers from
the uniform distribution function. This is a fundamental problem with the PIC
method whichmakes simulations computationally intensive. For testing purposes
this is an issue because tests ideally should be inexpensive such that they can be
run (often) on a personal computer. Code tests are often performed by comparing
with the linear theory of waves and instabilities (see Chapter 11 and 12). In both
cases, linear theory assumes that initial perturbations have small amplitudes. This
makes linear tests especially expensive as the initial perturbationwill be dominated
by noise unless many particles are used. Furthermore, even with many particles
per cell, the remaining particle noise is likely to make it difficult to notice subtle
errors.
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10. Particle loading

For testing purposes1 we have thus found it useful to be able to initialize a
so-called quiet start (Birdsall and Langdon, 1991). For a cold, uniform plasma, a
quiet start is initialized simply by setting the particle positions on the grid with
the same inter-particle distance. This makes the density field completely smooth
even when using just a single particle per cell. For a non-uniform density profile
and/or a warm plasma we can instead use inverse transform sampling (Devroye,
1986) of the probability distribution function to initialize the plasma with low
noise. This procedure is explained in detail below.

10.1 Inverse transform sampling

The starting point for the inverse transform method is the probability integral
transform, which states the following (Devroye, 1986): If x is a random variable
with probability distribution function, f(x), and cumulative distribution func-
tion, Fx(x), given by

Fx(x) =
∫ x

−∞
f(x′) dx′, (10.1)

then the random variable

y = Fx(x) , (10.2)

has a uniform distribution on the interval [0, 1] (Devroye, 1986).
The inverse transform sampling method works by inverting Equation 10.2,

i.e.,

x = F−1
x (y). (10.3)

Equation 10.3 can be used to generate random numbers from f(x) by generating
random numbers from the uniform distribution. At first glance this is mostly
useful for distribution functions where an analytical expression for the cumulative
distribution function and its inverse exist. If the inverse does not exit it is however

1Another technique to use few particles without having the simulation dominated by noise is
the δf -method. This method is described and used in for instance Kunz, Stone, and Bai (2014).
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still possible to solve Equation 10.2 directly using numerical root finding such as
the Newton-Raphson method2.

As described above, the inverse transform method is a convenient way of gen-
erating random numbers, xj , from a probability distribution, f(x), by generating
random numbers, yj from the uniform distribution on [0, 1]. If we instead let
the numbers yj be uniformly spaced on [0, 1] then the resulting xj represent the
distribution function, f(x), without noise. We illustrate this with two examples
in the following sections.

10.2 Non-uniform density

Let us as an example consider a plasma with density profile

ρ(x) = ρ0[1 +A cos(kxx)] , (10.4)

on the interval x = [0, Lx). Here A is the amplitude of the density perturbation
and ρ0 is the background density. The corresponding probability distribution is

f(x) = 1 +A cos(kxx) , (10.5)

and has cumulative distribution function

Fx(x) =
∫ x

0

[
1 +A cos(kxx′)

]
dx′ = x+A

sin(kxx)
kx

. (10.6)

This is a transcendental equation and the inverse of the cumulative distribution
function does not have a simple form. We can however still find xj by numerically
solving3

yj = xj +A
sin(kxxj)

kx
, (10.7)

2And even if neither F (x) nor F (x)−1 has an analytical form the method can still be used by
approximating the probability distribution with polynomials (Olver and Townsend, 2013)

3Note that the cumulative distribution function is monotone increasing as the probability dis-
tribution function is always positive. This ensures that Equation 10.7 has a unique solution for each
value of yj .
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Figure 10.1: Density profile generated using 1024 particles per cell and 128 cells.
The orange (blue) solid line was found by calculating the particle positions xj
by numerically solving equation 10.7 using random numbers (regularly spaced
values) for yj .

for each value of yj . The values of xj are then used as the particle positions. We
present the density profile that results from such a calculation in Figure 10.1. This
figure was produced by using Np = 1024 particles per cell and nx = 128 cells.
The amplitude of the perturbation was set to A = 1/100 and the TSC assignment
function was used to deposit the charge density. The blue line represents the den-
sity profile found when initializing the particles in a quiet manner (yj is regularly
spaced). This solution coincides with the density profile given by Equation 10.4
and the RMS difference is only 2 · 10−6. The orange line represents the density
found when initializing the particles in a noisy manner (yj is found by generating
random numbers from the uniform distribution). The RMS difference with re-
spect to the analytic density profile is 2 ·10−2, i.e., four orders of magnitude larger
than when using the quiet initialization. The black solid lines in Figure 10.1 in-
dicate the noise level expected when using 1024 particles per cell, given by N−1/2

p

where Np is the number of particles per cell.
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10.3 Maxwellian with low noise

We have also found the inverse transform method useful for initializing the ve-
locity distribution of the particles. This method is also described in Cartwright,
Verboncoeur, and Birdsall (2000) and Birdsall and Langdon (1991). We consider
a velocity distribution

f(v) = 1√
2πvt

e−v
2/2v2

t , (10.8)

which has the cumulative distribution function

Fv(v) = 1
2

[
1 + erf

(
v√
2vt

)]
, (10.9)

where the error function is defined to be

erf(z) = 2√
π

∫ z

0
e−t

2
dt . (10.10)

We can thus generate thermal velocities by solving

yj = 1
2

[
1 + erf

(
vj√
2vt

)]
, (10.11)

for vj . We find

vj =
√

2vt erf−1(2yj − 1) , (10.12)

where erf−1(z) is the inverse error function. The inverse error function is available
from Scipy (Jones, Oliphant, and Peterson, 2001-2017) both at the Python and
Cython level.

As for the example with the density profile, we can let the set of numbers yj
be randomly drawn numbers from the uniform distribution. In this case the set
of numbers vj will be randomly drawn numbers from f(v) (Equation 10.8). As
f(v) is simply a normal distribution with zeromean and standard deviation vt this
could also easily be achieved with one line of code by using Numpy (Oliphant,
2007).
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0.0

0.2

0.4

0.6 N = 28Quiet
Noisy

N = 210Quiet
Noisy

−2 0 2
v/vt

0.0

0.2

0.4
N = 212Quiet

Noisy

−2 0 2
v/vt

N = 214Quiet
Noisy

Figure 10.2: Histograms of velocities generated using equation 10.12 with a quiet
method (blue) and a noisymethod (orange) forN = 28, 210, 212 and 214 numbers.
The probability distribution function, f(v), given by equation 10.8 is shown with
a black solid line for reference.

The real benefit of the inverse transform sampling method is thus that we can
let the set of numbers yj be regularly spaced on [0, 1). In this case we get what
we will refer to as a quiet Maxwellian (as opposed to a noisy Maxwellian). As an
illustration we show histograms for velocities generated using the two different
methods (noisy and quiet) in Figure 10.2. The quiet Maxwellian is able to cap-
ture the correct mean and standard deviation of the distribution to a much better
accuracy than the noisy Maxwellian. This has the advantage that it is possible to
model the linear stages of kinetic phenomena using fewer particles per cell than
when using the noisy Maxwellian. The utility of the quiet Maxwellian is seen in
Figure 12.5 on page 135 in Chapter 12 where we use a quiet Maxwellian to follow
the evolution of perturbations with a very low initial amplitude. We have also
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used the quiet Maxwellian to study Landau damping of ion-acoustic waves. For
this study we found similar results in a simulation with 210 particles per cell us-
ing a quiet start as for a simulation with 216 particles per cell using a noisy start.
This means that a test of Landau damping can be performed rougly 64 times faster
when using a quiet Maxwellian.

While these properties of quiet starts make them very convenient for testing
purposes they should be used with care. The problem with quiet starts is that
correlations are introduced into the simulation by the imposed artificial order. As
detailed in Birdsall and Langdon (1991) this artificial order can lead to spurious
results. For this reason quiet starts should only be used for testing purposes.
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Chapter 11

Landau damping, aliasing and
the finite grid instability

In this chapter we use linear theory to study Landau damping of ion-acoustic and
electrostatic waves. We also investigate aliasing in PIC codes and one of the detri-
mental consequences it can have: the finite grid instability. The finite grid insta-
bility was originally discovered in full PIC codes (Langdon, 1970; Okuda, 1972)
where it arises due to aliasing when the grid resolution is not sufficient to resolve
the Debye length. This numerical instability is well-known and described in the
two standard text books on PIC methods (Hockney and Eastwood, 1988; Birdsall
and Langdon, 1991) but the corresponding instability in hybrid PIC codes was
discovered more recently (Rambo, 1995).

While developing the hybrid code we experienced that a simple simulation
of ion-acoustic waves with cold ions would go numerically unstable with a saw-
tooth profile in the charge density occurring at the grid scale. As we were initially
unaware of the work by Rambo (1995) we thought that this was due to a bug in
our code. Consequently, we spent significant effort on understanding and testing
the numerical dispersion relation of ion-acoustic waves.

The chapter is organized as follows. In the first sectionwe derive the dispersion
relations for Landau damping of ion-acoustic waves and electrostatic modes. We
also present results from simulations of Landau damping using the hybrid code.
In the second section we present the numerical dispersion relations in Langdon
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(1970), Birdsall and Langdon (1991), Hockney and Eastwood (1988) and Rambo
(1995). We then use the cold ion limit of the Vlasov-fluid version of the numeri-
cal dispersion relations to test our implementation of the second order finite dif-
ference scheme as well as CIC and TSC interpolation. In the third section we
highlight how the finite grid instability for a hybrid code only depends on the
temperature ratio Ti/Te. This is in contrast to the electrostatic finite grid instabil-
ity which can in principle be stabilized by increasing the numerical resolution.

11.1 Landau damping

We start out by deriving the dispersion relation for an unmagnetized plasma in
both the electrostatic and the Vlasov-fluid limit. We then extend these dispersion
relations to their numerical versions by applying the theory discussed on page
227-228 in Hockney and Eastwood (1988).

Starting from a 1D version of the Vlasov equation without a magnetic field
(Equation 2.3)

∂fs
∂t

+ v
∂fs
∂x

+ es
ms

E
∂fs
∂v

= 0 , (11.1)

we assume perturbations of the form exp(−iωt + ikx), linearize, rearrange and
integrate over velocity to obtain

δn̂s = −i es
ms

δÊ

∫ ∞
−∞

∂fs/∂v

ω − kv dv . (11.2)

In Equation 11.2 the hats indicate that we are working with Fourier amplitudes.
We assume a distribution function given by

fs(v) = ns√
2πvt

e−v
2/2v2

t , (11.3)

where vt =
√
Ts/ms is the thermal velocity and ns is the mean number density,

such that integration of Equation 11.2 over velocity yields

δn̂s = −iesns
ms

δÊ

kv2
t

W

(
ω

kvt

)
, (11.4)
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where W (z) is Ichimaru’s plasma dispersion function defined in Equation 6.23.
Up until this point the derivations are identical for an electrostatic plasma and for
the Vlasov-fluid plasma. The main difference arises in the way the electric field is
calculated. We can in both cases define a potential, Φ, such that

E = −∂Φ
∂x

, (11.5)

where Φ is found fromOhm’s law for the Vlasov-fluid model (Equation 2.15 with
B = 0) and by the solution to Poisson’s equation for the electrostatic model
(Hockney and Eastwood, 1988). We have for the Vlasov-fluid model and the elec-
trostatic model

Φ = −Te
e

logne , Vlasov-fluid (11.6)

∂2Φ
∂x2 = −e(ni − ne)

ε0
, Electrostatic (11.7)

and assume charge neutrality ni = ne = n0 for the Vlasov-fluid model and immo-
bile ions for the electrostatic model. We find for the perturbed electric fields

δÊ = −ik Te
en0

δn̂i , Vlasov-fluid (11.8)

δÊ = ie

ε0k
δn̂e , Electrostatic (11.9)

and the corresponding dispersion relations are then

1 + c2
s

v2
t

W

(
ω

kvt

)
= 0 , Vlasov-fluid (11.10)

1 +
ω2
p

k2v2
t

W

(
ω

kvt

)
= 0 . Electrostatic (11.11)

Here we have used the sound speed c2
s = Te/mi and the definition of the the

plasma frequency in Equation 1.1.
For a cold plasma we can take the large argument expansion of the plasma
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dispersion function (Equation A.64), i.e.,

W

(
ω

kvt

)
≈ −k

2v2
t

ω2 , (11.12)

in order to find the dispersion relation for cold ion-acoustic waves, ω2 = k2c2
s, and

for cold electrostatic modes, ω2 = ω2
p . When the plasma is warm these waves are

damped by Landau damping (Landau, 1946). The physical mechanism for Landau
damping of the waves is energy transfer between the wave and particles (see, e.g.,
Fitzpatrick 2014). Particles which have approximately the same velocity as the
phase velocity of the wave, vph = ω/k, will gain (lose) energy if their speed is
slightly smaller (larger) than vph. Landau damping of the wave occurs when there
are more particles gaining energy from the wave than losing energy to it. This
occurs when there are more particles with v < vph than with v > vph, i.e., for
v > 0 when

∂f

∂v

∣∣∣∣
v=vph

< 0 . (11.13)

The PIC code enables us to study Landau damping of electrostatic1 waves and
ion-acoustic waves. In order to illustrate Landau damping of ion-acoustic waves
we perform simulations on a grid with resolution nx = 32 with 216 particles
per cell. In the simulations presented here we initialize a uniform plasma using
equidistant positions for the particles and a quiet Maxwellian distribution as de-
scribed in Chapter 10. Additionally we add a perturbation to the velocity of the
form

δv = Acs sin(kx) , (11.14)

where x is the position at tkcs = 0 and the amplitude of the perturbation is
A = 0.01. Here the wavenumber is k = 2π/L where L is the length of the
simulation domain. We use a simplified form of Ohm’s law (Equation 2.15) where
the magnetic field is zero. This means that the electric field does not depend on

1We have implemented a solver for Poisson’s equation that uses FFTs. The main focus of this
thesis is the hybrid code so we will not go into detail on this here.
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Figure 11.1: Landau damping of ion-acoustic waves.

the particle velocities and consequently that it is not necessary to use the methods
described in Section 9.2. That is, instead of the predictor-corrector or Horowitz
method we can simply leapfrog the equations.

The initial condition outlined above is only an exact eigenmode in the cold
plasma limit. We nevertheless expect2 the initialization to lead to ion-acoustic
waves with

ρ(t) = ρ0[1 +A cos(kx) sin(ωt)]e−γt , (11.15)

v(t) = csA sin(kx) cos(ωt)e−γt , (11.16)

where ρ0 is the mean charge density and γ is the Landau damping rate given by
2It is in principle possible to initialize the simulation with the exact perturbed distribution func-

tion, δf , but we have found satisfactory results by using the common approach of perturbing the
velocity (or density) profile.
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γ = −Im(ω). As the electric field is given by Equations 11.5 and 11.6 it follows
that the electric field will decay exponentially as well. We note that the decay in
wave energy is associated with heating of the particles such that the total energy is
conserved (disregarding the non-energy conservation of the explicit PICmethod).

In order to study Landau damping, we follow the time evolution of the abso-
lute value of the k = 2π/L Fourier amplitude of the electric field. This quantity
is shown with solid lines in the upper part of Figure 11.1 for simulations with
Ti/Te = 0.1, 0.2, 0.4, and 0.6 (shown in blue, orange, green and red, respectively).
The corresponding dashed lines are exponential fits to the peaks in the evolution
of the absolute value of the Fourier amplitude of the electric field. We find a very
good agreement with theory, as seen in the lower panel of Figure 11.1 where the
growth rates from the simulations are plotted along with the theoretical curve (ob-
tained by solving Equation 11.10). As expected from linear theory, we find that
high temperature plasmas show stronger Landau damping.

11.2 Numerical dispersion relations

As outlined in Hockney and Eastwood (1988) (p. 227-228) the finite grid modifies
the dispersion relations. For the hybrid plasma model one finds3

1 + c2
s

v2
t

∞∑
n=−∞

(−iD̂)
kn

(
Ŵ (kn)

∆x

)2

W

(
ω

knvt

)
= 0 , (11.17)

while the electrostatic plasma model has

1 +
ω2
p

v2
t

∞∑
n=−∞

(
ε0Ĝ

)(−iD̂)
kn

(
Ŵ (kn)

∆x

)2

W

(
ω

knvt

)
= 0 . (11.18)

Here, the “aliased” wave number is defined by

kn = k − n 2π
∆x , (11.19)

3We have retained the notation in both Ichimaru (1973) and Hockney and Eastwood (1988)
which unfortunately leads to a clash. Ichimaru’s dispersion function,W (z), should however not be
confused with the Fourier transform of the assignment function, Ŵ (k).
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and one factor of Ŵ (kn)/∆x arises because the electric field is interpolated onto
the position of the particles and the other factor arises due to the deposition of
charge onto the grid. The Fourier transform of the assignment functions depends
on the order, p, of the interpolation scheme as

Ŵ (k)
∆x =

(sin(k∆x/2)
k∆x/2

)p
, (11.20)

where p = 2 for CIC and p = 3 for TSC. In equations 11.17 and 11.18 the spectral
responses of the centered finite difference discretization of the first and second
derivatives are given by (Hockney and Eastwood, 1988)

−iD̂ = sin(k∆x)
∆x , (11.21)

ε0Ĝ = (∆x/2)2

sin2(∆x/2) . (11.22)

The numerical dispersion relations, Equations 11.17 and 11.18, will in general
need to be solved numerically. The infinite sum can however be evaluated exactly
for a cold plasma. Taking the large argument expansion of the plasma dispersion
function and evaluating the sum by using the identity (equation 7-66 in Hockney
and Eastwood 1988)

(−1)s
s!

ds

dxs
cotx =

∞∑
n=−∞

1
(x− πn)s+1 , (11.23)

we find for the momentum conserving scheme in a hybrid code

ω2 = c2
s

sin2(k∆x)
(∆x)2 , CIC (11.24)

ω2 = c2
s

[5 + cos(k∆x)] sin2(k∆x)
6(∆x)2 . TSC (11.25)

We observe that aliasing introduces an incorrect dependence of the frequency on
the wavenumber. We obtain the correct dispersion relation, i.e., ω2 = k2c2

s, in
the limit ∆x→ 0. The corresponding results for an electrostatic plasma are given
in equation 7-67 in Hockney and Eastwood (1988).
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Figure 11.2: Aliasing of ion-acoustic waves in a cold plasma with CIC (left panel)
and TSC (right panel) interpolation. We find agreement with the theoretical pre-
dictions given in Equations 11.24 and 11.25.

For testing purposes it is immensely useful to have the exact expressions for
the aliased frequency given by Equations 11.24 and 11.25. The reason is that sim-
ulations should match very well at all wavelengths when comparing with exact
expressions that include the errors due to the spatial discretization. Agreement
with Equations 11.24 and 11.25 indicate that both interpolation, finite difference
schemes and particle mover are working correctly4.

We test the theory for aliasing of ion-acoustic waves by exciting the fundamen-
tal mode in a cold plasma using a grid resolution of nx = 256 and 256 particles
per cell. The initialization of velocities and positions of particles is the same as
used for Landau damping in the previous section but now with vt = 0. In or-
der to delay the onset of the resulting finite grid instability (to be discussed in the
next section) we also change the amplitude of the perturbation to be very low, i.e.,
A = 10−5. Even so, we have to limit the duration of the simulation to tkcs = 4
in order to prevent the finite grid instability from affecting our results.

From the simulation we construct a discrete approximation to the function
4Here, correctly really means that the errors associated with the spatial discretization are as

expected. This test would for instance be able to find a subtle error in the implementation of TSC
interpolation which made it still work but at an effectively lower order.
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Figure 11.3: Warm plasma with λD/∆x = 1 which is numerically stable at all
wavelengths (upper row) and warm plasma with λD/∆x = 1/10 which is numer-
ically unstable (lower row).

ρ(t, x). This function is then Fourier transformed in time and space by using
FFTs to obtain ρ̂(ω, kx). The result is shown in Figure 11.2 where the left (right)
panel shows a map of log(|ρ̂|) for a simulation using CIC (TSC) interpolation. We
observe in both cases that the power in the (kx, ω) plane follows the theoretical
curves given by Equation 11.24 and 11.25.

11.3 The finite grid instability

In the previous section we saw that a finite grid introduces an artificial wavenum-
ber dependence on the frequencies of ion-acoustic waves and electrostatic modes.
When the plasma is cold, the frequencies are real, andwhile these errors are not op-
timal, it is reassuring that the errors decrease as the spatial resolution is increased.
When the plasma is warm, the frequency is no longer purely real and the imagi-
nary part of the frequency is the Landau damping rate. Perhaps not surprisingly,
aliasing also introduces errors into the imaginary part of the frequency. Langdon
(1970) found that the aliasing errors can even change the sign of the imaginary
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Figure 11.4: Warm Vlasov fluid with Ti/Te = 1/10 which is numerically stable at
all wavelengths (upper row) and very cold Vlasov fluid with Ti/Te = 10−3 which
is numerically unstable at short wavelengths (lower row).

part. For a warm plasma, aliasing thus leads to Landau damping of the wrong
sign, i.e., growth of a numerical instability. This is the finite grid instability.

We have solved Equation 11.18 in order to reproduce figures 7-2 and 7-3 in
Hockney and Eastwood (1988), here shown in Figure 11.3. In this figure it is illus-
trated how numerical stability depends on the ratio of the Debye length, λD, to
the length of a grid cell, ∆x. Here theDebye length is given by λD = vt/ωp. In the
upper left panel of Figure 11.3 we see that marginally resolving the Debye length
with λD = ∆x gives a stable simulation, i.e., the imaginary part is always negative
and all modes will be damped. In the lower left panel of this figure we show how
the simulation becomes numerically unstable if λD < ∆x (Langdon, 1970). In an
electrostatic code one can in principle increase the numerical resolution in order
to remove the instability for simulations of plasmas with low temperature5.

The solution to the numerical dispersion relation for a hybrid code, Equation
11.17, however only depends on the dimensionless parameter Ti/Te. So while we

5Although it might not be computationally feasible to increase the resolution with a factor of
10 as in the example in Figure 11.3.
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had the option of modifying the dimensionless parameter which governs the elec-
trostatic case, in the Vlasov-fluid case the parameter is set solely by the physics of
the simulation that we want to perform. In Figure 11.4 we show the solution to
the numerical dispersion relation for Ti/Te = 1/10 and Ti/Te = 10−3 for the mo-
mentum conserving scheme and TSC interpolation. We observe that the warm
plasma is stable with damping at all wavelengths (with the k∆x → 0 damping
being due to physical Landau damping). The almost cold plasma is however nu-
merically unstable as evident from the small peak with Im(ω) > 0 in the lower
left panel in Figure 11.4. The linear theory thus predicts an instability that grows
close to the grid scale unless the ions are perfectly cold. A perfectly cold plasma
is an idealization that we cannot hope to achieve in the code, as numerical heat-
ing will give the ions a temperature even though they are initialized with Ti = 0
(Rambo, 1997).
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Chapter 12

Hybrid code experiments

We have presented the linear theory for Hall MHD and the Vlasov-fluid equations
in Chapter 4-7 and the PICmethod for solving the Vlasov-fluid equations in Chap-
ters 8 and 9. In this chapter we use the former to test our implementation of the
latter. We present 1D simulations of the whistler and ion-cyclotron waves, ion-
cyclotron damping and instability, the parallel and the oblique firehose instability
and the resonant ion beam instability. We also present a 2D simulation in which
both the parallel and the oblique firehose instability can grow simultaneously.

For the sake of brevity, the examples presented are not exhaustive of the tests
that are currently available in the code. Tests not presented in this thesis in-
clude 1D simulations of electron Landau damping, the electrostatic two-stream
instability and the non-resonant ion beam instability as well as 2D simulations
of ion-acoustic, electrostatic, whistler and magnetosonic waves with wavevectors
inclined to the grid and single particle motion in constant fields (i.e., gyromotion
andE×B-drift). The code also uses unit testing1 of charge deposition, boundary
conditions, MPI-communication and the finite difference scheme.

1Unit testing is a popular software testing method whereby small units of the software are tested
independently. Unit tests compliment the physics experiments presented in this chapter which
simultaneously test all the features of the code. Contrary to these experiments, an error associated
with a failed unit test is simpler to locate in the source code and often also easier to diagnose.
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12. Hybrid code experiments

12.1 Whistler and ion-cyclotron waves

In this section we test the ability of our code to propagate whistler and ion-
cyclotron waves and their low wavenumber counterpart, Alfvén waves. The dis-
persion relation for these circularly polarized waves is given by the Hall MHD
dispersion relation when the ions are cold (Ti = 0). We derived this dispersion
relation as well as the eigenfunctions for the cold whistler and ion-cyclotron waves
in Chapter 4. We can use the analytic form of the eigenmodes and frequencies to
excite specific wavemodes in the hybrid code. We perform a total of 14 such simu-
lations in order to reproduce the dispersion relation numerically, see Figure 12.1.
In this figure, results from simulations are shown with orange crosses and the the-
oretical dispersion relation of whistler and ion-cyclotron waves are shown with a
blue solid line. The simulations are 1D with the magnetic field in the x-direction
and have a numerical resolution of nx = 32. The amplitude of the perturbation
is A = 5× 10−3 and the simulations are run for two wave periods. We use a quiet
start and since the plasma is cold we only need to use a single particle per cell and
CIC interpolation. The electron temperature is set to be Te = 0 and the time
step is calculated from the CFL condition on the grid scale, see Equation 4.17 in
Chapter 4. In producing Figure 12.1 we have kept the resolution per wavelength
fixed at 32 cells by varying the length of the box to be Lx = 2π/kx where kx is
the wavenumber under consideration. The numerical results presented in Figure
12.1 agree very well with the theory.

In order to quantify the numerical error in the simulations we can also calcu-
late the RMS error with respect to the anytical solution. As our code is second
order accurate in space (see Section 9.1) this error should decrease with grid res-
olution as n−2

x . In order to test this, we perform a new set of simulations with
kxva/Ω = 1 where the length of the simulation domain is fixed, LxΩ/va = 2π
and the grid resolution is varied as nx = 2m with m = 2, 3, . . . , 9. Second or-
der convergence is indeed observed, as evident in Figure 12.2 where we present
the RMS error of the By component of the magnetic field as a function of the
number of grid cells per wavelength.
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Figure 12.1: Dispersion relation for whistler and ion-cyclotron waves. The fre-
quencies measured in simulations agree with the Hall MHD linear dispersion re-
lation given by Equations 4.14 and 4.15.

12.2 Ion-cyclotron damping

From a theoretical point of view, we have seen that warm ions can lead to damp-
ing of waves, e.g. ion-cyclotron damping and Landau damping, which were intro-
duced in Chapter 7 and 11, respectively. We have already studied Landau damp-
ing using the hybrid code in Chapter 11 and we now proceed with ion-cyclotron
damping. We consider a plasma with equal parallel and perpendicular tempera-
tures with β = 5 and Te = 0. This physical setup was investigated in Figure 7.3
in Chapter 7 where it is evident that the maximal damping rate is γ/Ω = 0.41
and occurs at k‖va/Ω = 1.34. Using this information, we perform a simulation
where the length of the simulation domain Lx is set to be the wavelength of the
most strongly damped mode. This simulation has nx = 32 grid cells with 218

particles per cell and is initialized using a quiet Maxwellian. The simulation uses
CIC interpolation and the predictor-corrector method. Although the cold plasma
eigenmode is not the correct eigenmode when the plasma is warm, we neverthe-
less use this eigenmode for initializing the simulation2. We follow the evolution of

2It is in principle possible to obtain a better initial condition by utilizing the dispersion relations
described in Chapter 7 but we have not yet pursued this.

131



12. Hybrid code experiments

101 102 103

nx

10−8

10−6

10−4

10−2

R
M

S
Er

ro
r

0.1n−2
x

Simulation

Figure 12.2: Second order convergence of whistler waves with kxva/Ω = 1.

the absolute value of the Fourier amplitude of the excited mode, see Figure 12.3.
While the trend in the simulation data (solid orange line) follows the theoretical
prediction (solid blue line) the match is not perfect. We attribute this discrepancy
to the fact that we have not excited the eigenmode exactly.

12.3 Ion-cyclotron instability

For the ion cyclotron instability we consider β‖ = 1 and β⊥ = 4 in which case
the wave can draw energy from the particles. We have previously calculated the
maximum growth rate and the wave number at which it occurs, see Figure 7.2
in Chapter 7. We use this information to set up a simulation with nx = 32,
LxΩ/va = 8.72, and 216 particles per cell. We use TSC interpolation and evolve
the simulation until Ωt = 25 using the Horowitz method. We plot the evolution
of the Fourier amplitudes of the transverse magnetic field components in Figure
12.4. The amplitude starts out at a level of ∼ 10−3 corresponding to the noise
level set by using a finite number of particles and not using a quiet Maxwellian.
The high noise-level in this simulation highlights how well the quiet Maxwellian
works for the parallel firehose instability to be discussed in the next section. The
transverse components of the magnetic field (δBy and δBz ) are seen to be out of
phase as expected for circular polarization (see Chapter 4).
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Figure 12.3: Ion-cyclotron damping for a plasma with β = 5.

12.4 Parallel firehose instability

The firehose instability is a microscale instability which feeds off anisotropy in
velocity space, i.e., when the parallel temperature is greater than the perpendicu-
lar temperature. We consider the situation studied in Figure 7.1 in Chapter 7, i.e.,
β‖ = 4, β⊥ = 1, and Te = 0. We initialize a uniform plasma with an anisotropic
velocity distribution by using a quiet Maxwellian (introduced in Chapter 10). We
seed the instability with Gaussian noise in the magnetic field components of am-
plitude δB/B = 10−14. In order to have a clean growth of a single unstable mode
we set the length of the box to be Lx = 2π/kmax, where kmaxva/Ω = 0.37 corre-
sponds to the maximum growth rate of σmax/Ω = 0.189. We use a modest grid
resolution of nx = 32 but employ 214 particles per cell. The initial magnetic
field is along the x-direction and we track the evolution of the Fourier amplitudes
of δBy and δBz. This is shown in Figure 12.5 along with an exponential fit to
the evolution of the amplitude of δB =

√
δB2

x + δB2
y + δB2

z . The perpendicular
magnetic field components are exponentially growing and oscillating with the y-
component lagging behind the z-component with a phase shift of π/2. The quiet
Maxwellian allows us to follow the exponential growth of the parallel firehose in-
stability over 12 orders of magnitude and the error in the growth rate is less than
1%. In comparison, we were only able to follow the evolution of the ion-cyclotron
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Figure 12.4: Evolution of the transverse magnetic field for the ion-cyclotron insta-
bility.

instability over 2 orders of magnitude, despite using four times as many particles
per cell.

12.5 Oblique firehose instability

The oblique firehose instability was discussed in Chapter 7, see especially Figure
7.4. This instability occurs when the wave vector, k, is inclined with respect to
the magnetic field, B. In this section we consider a plasma with β‖ = 4 and
β⊥ = 1 which is unstable to both the whistler and the Alfvén firehose instability
(depending on the inclination angle, θ). Note that these are the parameters used
in Section 12.4 which however differ from the parameters used to produce Figure
7.4 in Chapter 7.

We can use the hybrid code to perform 1D simulations of the oblique firehose
instability where the background magnetic field is in the xy-plane, oriented with
an inclination −θ with respect to the x-axis (Hellinger and Matsumoto, 2000;
Kunz, Stone, and Bai, 2014). For a 1D simulation along x, the wave vector of the
mode under study will then be forced to lie along the x-axis.

We consider a series of simulations, varying θ from parallel propagation to
highly oblique propagation. The maximum growth rate as a function of θ is found
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Figure 12.5: Evolution of the transverse magnetic field for the parallel firehose
instability with β‖ = 4 and β⊥ = 1.

by producing a map of growth rates in the (k, θ)-plane and finding the maximum
values along the k-direction. The resulting theoretical growth rates are presented
in Figure 12.6 and the results from simulations are shown with crosses. These
simulations were initialized by setting the length of the simulation domain to be
equal to the maximally unstable wavelength. The simulations did not use a quiet
Maxwellian and the resulting growth is less accurate than for the parallel firehose
instability presented in Section 12.4. In order to produce Figure 12.6 we have thus
had to adjust the fitting range for the exponential evolution in the simulations.

12.6 Ion Bernstein modes

Ion Bernstein modes have their wavevector perpendicular to the magnetic field.
These modes have purely real frequencies which at high k⊥va/Ω are very close to
resonance with multiples of the ion cyclotron frequency, i.e., the frequencies are
given by ω ± nΩ where n ∈ N. We perform a simulation of these modes with
a setup which is very similar to the one presented in the code paper for CHIEF
(Muñoz et al., 2016). We take the magnetic field to be along the z-direction and
initialize a 1D simulation of lengthLxΩ/va = 63.6 with a resolution of nx = 512.
The time step is set to be Ω∆t = 0.0318 and the ions have an isotropic velocity
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Figure 12.6: Growth rates for the whistler and Alfvén firehose instabilities as a
function of the inclination, θ, between k andB for β‖ = 4 and β⊥ = 1.

distribution with β = 1/10. The electron temperature is set to be the same as
the temperature of the ions, i.e., Te/Ti = 1. The number of particles per cell is
256 using TSC interpolation. As in Muñoz et al. (2016) we let the ion Bernstein
modes grow from the thermal noise and evolve the simulation until Ωt = 600.

The data analysis is very similar to the one used to study aliasing of ion-acoustic
waves in Chapter 11. We construct a 2D array which is a discrete representa-
tion of the function Ex(x, t). We then perform a 2D discrete Fourier transform
(DFT) using Numpy’s fast Fourier transform (FFT) in order to find Êx(kx, ω).
We present a map of log |Êx(kx, ω)|2 in Figure 12.7 along with theoretical predic-
tions for the frequencies.

These theoretical predictions were found using the general Vlasov-fluid disper-
sion relation solver presented in Chapter 7. We initialize our dispersion solver
with an initial guess of nΩ with n = 1 to 8 at k⊥va/Ω = 20 and then iter-
ate towards lower k⊥. For each mode there is some minimum value of k⊥ at
which the solver fails to converge. This cutoff occurs at higher k⊥ for the higher
frequency modes resulting in a region of (k⊥, ω)-space in which modes are not
present. The boundary between this region and the region with ion Bernstein
modes is roughly delineated by the fast magnetosonic mode with dispersion rela-
tion ω = k⊥

√
v2
a + c2

s. The power spectrum obtained from the simulation shows
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Figure 12.7: Power spectrum of Êx. Theoretical curves for ion Bernstein modes
shown with long-dashed solid lines and for the magnetosonic wave with a short-
dashed solid line for the k⊥ > 0 modes. The power spectrum is symmetric around
k⊥ = 0.

the same behavior and agrees well with the theory.
Some discrepancy between theory and simulation is however seen at high fre-

quency in Figure 12.7. Similar discrepancies were seen at even lower frequencies in
preliminary simulations with lower spatial resolution (nx = 128 and nx = 256).
This indicates that the discrepancy observed in Figure 12.7 decreases with grid
resolution. This could be due to spatial aliasing (as for the ion-acoustic waves)
not included in the linear theory for the ion Bernstein modes. Another potential
issue could be the resolution in time. The highest frequency mode (ω = 8Ω) has
1/ω∆t ≈ 4, i.e., the frequency is only resolved with four time steps. A future
improvement to this test could thus probably be obtained by decreasing the time
step and/or increasing the grid resolution.

The overall trend of the dispersion curves of the ion Bernstein modes in Figure
12.7 differs from the one observed in Muñoz et al. (2016). In figure 5 in Muñoz et
al. (2016) the ion Bernstein modes have frequencies nΩ at high k⊥ which increase
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to (n+ 1)Ω at low k⊥. This is in contrast to our simulations where ion Bernstein
modes have frequencies nΩ at high k⊥ which increase at intermediate k⊥ before
returning to a value of nΩ at low k⊥. The underlying reason for this difference is
the difference in the way electron physics is included in the simulations. While our
code assumes massless electrons the CHIEF code includes electron inertia. This
difference is also present in the theoretical predictions. In Muñoz et al. (2016) the
theoretical dispersion curves are calculated by solving a longitudinal dispersion
relation where electron physics is included by taking the cold electron limit (their
equation 28). In contrast, our theoretical curves are found by using the Vlasov-
fluid dispersion relation solver introduced in Chapter 7 and setting k‖va/Ω to
have a very small value (10−8). This solver assumes massless electrons but, unlike
the dispersion relation in Muñoz et al. (2016), the results depend on the electron
temperature, Te. Our results agree qualitatively with the theoretical dispersion
of ion Bernstein modes presented in figure 6 in Told et al. (2016), in which the
hybrid dispersion relation is also solved.

12.7 Ion beam instability

In this section we study the ion beam instability which arises when a tenuous
beam of ions traverses a stationary background plasma with a velocity that exceeds
the Alfvén velocity, va. We consider a beam of ions with density nb propagating
through a stationary plasma with density n0. The total density is thus nb + n0.
The plasma has a magnetic field in the direction of beam propagation. We can
transform this system into a coordinate frame in which the total ion current is
zero, that is

nbvb + n0v0 = 0, (12.1)

where vb is the beam velocity and v0 is the velocity of the stationary plasma in this
frame. Plasma species with a drifting velocity were not included in the derivation
of the conductivity tensor in Chapter 6. As a result the plasma dispersion solver
presented in Chapter 7 is not capable of finding the frequencies in this case and
we instead refer to the literature. Assuming cold ions, the dispersion relation is
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Figure 12.8: Resonant (k > 0) and non-resonant (k < 0) ion beam instability.

(Scharer and Trivelpiece, 1967; Winske and Leroy, 1984)

k2
‖v

2
a

Ω2 + α
ω − k‖vb

ω − k‖vb + Ω + (1− α)
ω − k‖v0

ω − k‖v0 + Ω −
ω

Ω = 0, (12.2)

where

α = nb
n0 + nb

, (12.3)

is the ratio of the beam and electron number densities.
A numerical solution of Equation 12.2 is shown for vb/va = 10, α = 1/10 and

v0 = −nbvb/n0 in Figure 12.8. In this figure the resonant instability with k‖ > 0
arises due to a resonance of the beam velocity with the ion-cyclotron frequency
such that the maximum growth rate occurs when (Winske and Leroy, 1984)

Re(ω)− k‖vb + Ω ≈ 0 . (12.4)

The non-resonant instability with k‖ < 0 is due to the bulk motion of the beam
through the plasma. With the parameters used here, the growth rate of the non-
resonant instability is seen to slightly dominate the growth rate of the resonant
instability. The growth rate of the non-resonant instability however decreases
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Figure 12.9: Evolution of By as a function of time for the resonant ion beam
instability.

rapidly as the α parameter is decreased such that the resonant instability is domi-
nant for α . 0.08 for this beam velocity (vb = 10). We have performed simula-
tions showing that we can recover the maximal growth rate for the resonant and
non-resonant instabilities by setting up simulations with Lx equal to the wave-
length of the dominant modes. For the sake of brevity, we do not present a dis-
cussion of these simulations of the linear regime.

We instead proceed to set up a simulation of the nonlinear evolution of the
resonant ion beam instability. The parameters are almost identical to the ones
used in Muñoz et al. (2016). We consider a very tenuous beam with α = 0.02
traversing at vb/va = 10 through a background plasma with β = 1. We initialize
the two different populations of ions each with 1024 particles per cell but with
their particle weights adjusted such that one particle species has density nb and the
other has density n0. Adjusting the particle weights makes it possible to follow
the evolution of a very tenuous beam with good statistics on the distribution in
phase-space3. We use TSC interpolation with the predictor-corrector method and
set the electron temperature to be such that Te/Ti = 1/10. We furthermore align

3The way this works in our code is that two particle arrays are created with the particle weight
stored as an attribute to the array. That is, we do not have the option of modifying the particle
weight per particle, a method that is used in, for instance, the PhotonPlasma code (Haugbølle,
Frederiksen, and Nordlund, 2013).
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Figure 12.10: The particle phase-space at Ωt = 40. The core (beam) ions are
shown in the upper (lower) panel. Notice the difference in axis limits.

the magnetic field with the x-direction on a nx = 512 grid with LxΩ/va = 256
and evolve the simulation until Ωt = 120.

The evolution ofBy is shown in Figure 12.9 as a function of time. In the linear
stage of the instability waves are propagating to the right while they propagate to
the left in the nonlinear stage. Comparing Figure 12.9 with figure 8.a in Muñoz
et al. (2016) we see that their figure has much smoother features than ours. This
might simply be due to their use of nx = 1024, i.e., twice the numerical resolution,
but it is also possible that the smoothness observed in their figure 8 is due to
binomial filtering of the sources which they include as an option in their code.

We also consider the evolution of the phase-space distribution of the core ions
and the beam ions. This is shown at Ωt = 40 in Figure 12.10 with the core (beam)
ions in the upper (lower) panel. We observe that the beam ions have acquired
a significant velocity in the perpendicular direction (vy ) with velocities that ap-
proach the initial beam velocity. The perturbation is sinusoidal (as seen for the
By component as well). In contrast, the core ions are only slightly perturbed.
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Figure 12.11: The change in velocity space distribution between the initial (Ωt =
0) and the one at Ωt = 400, produced by subtracting the normalized histograms.

12.8 Firehose instability in 2D

In this section we present a 2D simulation of the firehose instability. The setup
is the same as in Hellinger and Matsumoto (2001) and Muñoz et al. (2016), i.e.,
nx = LxΩ/va = 256, ny = LyΩ/va = 128, with 256 particles per cell4. We use
TSC interpolation and the Horowitz method. The initial ion temperatures are
β‖ = 2.8 and β⊥ = 0.4β‖, these parameters were also used in the paper on the
oblique firehose instability byHellinger andMatsumoto (2000) and for producing
Figure 7.4 in Chapter 7. We use Ω∆t = 8× 10−3 for the time step and evolve the
system until Ωt = 400.

The firehose instability feeds off the energy stored in the velocity space anisotropy.
In a simulation where the instability is initialized with a velocity space anisotropy,
like the one performed here, the velocity space anisotropy will thus decrease as a
function of time due to the action of the firehose instability. The Alfvén firehose
instability has been shown to be even more effective than the whistler firehose
instability at decreasing the pressure anisotropy (Hellinger and Matsumoto, 2000;

4A more detailed analysis of this physical system can be found in Hellinger and Matsumoto
(2001) and Muñoz et al. (2016).
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Hellinger andMatsumoto, 2001; Muñoz et al., 2016). Both kinds of firehose insta-
bilities can be present simultaneously in our 2D simulation. The resulting change
in the velocity space distribution can be seen by subtracting the velocity space dis-
tribution at Ωt = 0 from the velocity space distribution at Ωt = 400. Defining
the parallel and perpendicular velocities with respect to the initial magnetic field,
v‖ = vx and v2

⊥ = v2
y + v2

z , we show the resulting change in the velocity space
distribution in Figure 12.11. This figure clearly shows that the firehose instability
changes the velocity space distribution by increasing the perpendicular velocity
component (shown in red) at the cost of a decrease in parallel velocities (shown
in blue).

We can quantify this change by calculating the pressure anisotropy of all the
particles (neglecting any eventual spatial dependency). We use as an estimate of
the parallel and perpendicular temperatures the standard deviations of the corre-
sponding particle velocities. We find T⊥/T‖ = 0.41 at Ωt = 0 and T⊥/T‖ = 0.7
at Ωt = 400, showing that the temperature anisotropy has been significantly re-
duced5.

5The fact that we do not get T⊥/T‖ = 0.40 at Ωt = 0 is probably due to the rather low number
of particles, ∼ 8× 106, in the simulation.
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Chapter 13

Conclusion and future prospects

In this PhD thesis we have studied weakly collisional and collisionless astrophysi-
cal plasmas by using two different frameworks, i.e., Braginskii MHD and Vlasov-
fluid theory. We used Braginskii MHD in Chapter 3 and Papers I-III in order to
investigate the effect of composition gradients on the stability properties of the
ICM. Using the results of Peng and Nagai (2009), we explicitly showed in Paper I
that their model for the radial temperature and composition profiles can be unsta-
ble at all radii. In the inner regions of the cluster model, the instability under
consideration is the heat- and particle-flux-driven buoyancy instability (HPBI)
while the instability in the outer regions is the magneto-thermo-compositional
instability (MTCI). These instabilities, originally found and analyzed by Pessah
and Chakraborty (2013), are generalizations of the heat-flux-driven buoyancy in-
stability (HBI) and the magneto-thermal instability (MTI) (Balbus, 2000, 2001;
Quataert, 2008) to a setting with both thermal and compositional gradients.

In order to study the instabilities numerically, and thereby be able to investi-
gate their nonlinear evolution and saturation, we modified the MHD code Athena
(Stone et al., 2008). This modification was presented in Paper II where we thor-
oughly tested the changes to the code and performed the first idealized simulations
of the MTCI and the HPBI. These simulations studied constant temperature at-
mospheres with a composition that increases with height, a situation that is stable
according to both the Schwarzschild (Schwarzschild, 1958) and Ledoux criteria
(Ledoux, 1947) but is unstable according to the stability criteria put forward in
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Pessah and Chakraborty (2013). This investigation showed that both the MTCI
and the HPBI act to mix the composition and reorient the magnetic field to be
inclined on average by about 45 deg with respect to gravity.

In Paper III, we lifted the assumption of locality by extending the vertical
domain of the simulations to be several scale heights. We also relaxed the assump-
tion of a constant temperature background atmosphere. This required extend-
ing the capabilities of Athena to allow for non-constant transport coefficients for
the anisotropic heat conductivity and viscosity (χ‖ and ν‖). In order to compare
with linear theory in this quasi-global setting, we also extended previous analytical
treatments by Pessah and Chakraborty (2013) and Paper I. The simulations of the
HBPI showed that the instability is able to drive mixing of composition on time
scales that are shorter than the time scale upon which composition gradients form
in sedimentation models. If this turns out to be a general consequence, this would
seem to indicate that helium sedimentation is not an issue for X-ray observations.
This conclusion may however not be too robust since the growth rate of the HPBI
depends on the initial composition gradient. A final conclusion can thus only be
reached by considering a model which can adequately describe the effect of helium
sedimentation while simultaneously taking the weakly, collisional stability prop-
erties of the plasma into account. The development of such a theory is still work
in progress.

Besides the neglect of helium sedimentation, another serious defect is the treat-
ment of microscale physics. In particular, Braginskii MHD is known to be inad-
equate at modeling microscale instabilities (Schekochihin et al., 2005) and we use
an ad-hoc model for limiting the pressure anisotropy when including Braginskii
viscosity. While heliummixing was found in all simulations, regardless of whether
Braginskii viscosity was included or not, this is still a shortcoming of the current
approach, and a proper treatment of the microphysics might lead to qualitatively
different results.

In a collisionless plasma, the diffusive transport of heat and momentum is
mediated via electromagnetic forces. The nonlinear evolution and saturation of
microscale instabilities is consequently believed to play a role in setting the trans-
port properties of collisionless plasmas. Computer simulations using PIC simu-
lations are a useful tool for calculating the effective collisionality of collisionless
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plasmas subject to microscale instabilities. Some of these studies have shown that
the effective heat conductivity can be reduced by the ion mirror instability and
the electron whistler instability (Komarov et al., 2016; Riquelme, Quataert, and
Verscharen, 2016). This effect is caused by pitch-angle scattering and electron trap-
ping in regions of low magnetic field. The suppression of heat conductivity could
potentially influence the evolution and saturation of the MTI and the HBI (and
their generalizations presented in Chapter 3) which have growth rates that depend
on the magnitude of the anisotropic heat conductivity, χ‖. While PIC simulations
can be used to study small scale instabilities in the ICM they are prohibitively ex-
pensive for it to be feasible to use them to study the large scale dynamics. We are
instead currently investigating the consequences of reduced heat conductivity by
performing Braginskii MHD simulations of the MTI using a subgrid model for
the heat conductivity (Berlok, Pessah, and Quataert, 2017, in preparation).

We have presented a new Vlasov-fluid code in Chapters 8-12. This 2D-3V
code is written in Python and is MPI enabled along one of the spatial dimensions.
Python was chosen for its usability and, as discussed in Chapter 8, several other
projects have already successfully demonstrated that Python is a viable option for
HPC applications. The Vlasov-fluid code presented in Chapters 8-12 currently
contains several options for interpolation (CIC and TSC, see Chapter 8) and sev-
eral methods for evolving the equations in time (the predictor-corrector and the
Horowitzmethod, see Chapter 9). The code has been tested and is able to convinc-
ingly reproduce results from linear theory (see Chapter 12). Future modifications
to the code could include i) extending the code to allow for all three spatial dimen-
sions, ii) implementing the expanding/compressing box used by, e.g., Matteini
et al. (2006, 2012), Hellinger et al. (2015), and Sironi and Narayan (2015), and
iii) implementing the shearing box in order to study the collisionless magneto-
rotational instability (MRI) as in Kunz, Stone, and Bai (2014) and Kunz, Stone,
and Quataert (2016) and the shear-driven firehose and mirror instabilities as in
Kunz, Schekochihin, and Stone (2014).

The general dispersion relation solver presented in Chapter 7 could also be
improved and made publicly available in the future. Firstly, an easy-to-use Python
dispersion solver which includes many of the textbook examples of plasma waves
and instabilities would have merit for teaching purposes. Secondly, interesting re-

147



13. Conclusion and future prospects

search avenues could be i) the inclusion of finite electron inertia and resistivity in
the Vlasov-fluid dispersion relation solver, ii) a generalization of the expression for
the conductivity tensor to allow for drifting species (Equation 6.27 in Chapter 6),
iii) the ability of the solver to return the eigenmodes as well as the eigenvalue for
a given solution and iv) the possibility of using the Hall dispersion relation solver
presented in Chapter 4 to generate initial guesses for the Vlasov-fluid dispersion re-
lation solver. These, very feasible, ideas for modifications would make the disper-
sion relation solver a powerful tool for comparing with Vlasov-fluid simulations.
As it stands, the dispersion relation solver presented in Chapter 7 already con-
tains a feature not included in theHYDROS dispersion relation solver (Told et al.,
2016), i.e., it has the ability to include several ion species in the calculation. While
this feature of the solver has not yet been properly tested, and is consequently not
presented in Chapter 7, it could prove very useful for investigating the role of he-
lium in the ICM. The motivation for such an investigation is that studies of the
solar wind have shown that the helium component can be important (Hellinger
and Trávníček, 2013; Verscharen, Bourouaine, and Chandran, 2013; Verscharen et
al., 2013; Yoon et al., 2015). An interesting prospect would therefore be to use the
solver to calculate the properties of an ICM with different helium compositions
in order to understand how helium sedimentation could change the microphysics
of the ICM. Subsequent simulations of a hydrogen-helium plasma could then be
performed by employing the Vlasov-fluid code that we have developed.

Other interesting avenues that the Vlasov-fluid code could be used for in the
future include studies of collisionless turbulence (e.g. Franci et al. 2015) and
collisionless shocks and cosmic rays (e.g. Gargaté et al. 2010 and Caprioli and
Spitkovsky 2013). There is thus no shortage of interesting problems that can be
targeted with a Vlasov-fluid code. As the major hurdle of development is done,
the code now shows promise for deepening our knowledge of collisionless astro-
physical plasmas.
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Appendix A

Various derivations

A.1 Integrals in perpendicular velocity

Inspection of the Λ tensor shows that we need integrals of the following types1.

∫ ∞
0

xJn(px)2e−ax
2
dx = Γn(λ)

2a , (A.1)∫ ∞
0

x2 Jn(px)J ′n(px)e−ax2
dx = Γ′n(λ)

2ap λ, (A.2)∫ ∞
0

x3 J ′n(px)2e−ax
2
dx = 1

4a2

(
n2Γn
λ
− 2Γ′nλ

)
, (A.3)

where

Γn(λ) = e−λIn(λ), (A.4)

and

λ = p2

2a. (A.5)

1See also equation 4.67 and page 106 in Ichimaru, 1973
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A. Various derivations

These integrals (Equations A.1-A.3) are derived below. Our starting point is the
Weber integral (see, e.g., Appendix B in Baumjohann and Treumann 1996)

∫ ∞
0

xJn(px)Jn(rx)e−ax2
dx = (2a)−1 exp

(
−p

2 + r2

4a

)
In

(
pr

2a

)
, (A.6)

which we can use to derive expressions for all three integrals. An expression for
the first integral is immediately found by setting r = p

∫ ∞
0

xJn(px)2e−ax
2
dx = (2a)−1 exp

(
− p

2

2a

)
In

(
p2

2a

)
= Γn(λ)

2a , (A.7)

We note that the relations between In and Γn and their derivatives are given by

In = Γneλ, (A.8)

I ′n =
(
Γ′n + Γn

)
eλ, (A.9)

I ′′n =
(
Γ′′n + 2Γ′n + Γn

)
eλ, (A.10)

which is useful for rewriting expression in terms of Γn and its derivatives.
An expression for the second integral (Equation A.2) is found by differentiat-

ing the expression on both sides with respect to p and then subsequently setting
r = p. By the chain rule d/dpJn(px) = xJ ′n(px) so

∫ ∞
0

x2 Jn(px)J ′n(px)e−ax2
dx = 1

2ae−λ
p

2a
(
I ′n − In

)
= Γ′n(λ)

2ap λ. (A.11)

For the last integral (Equation A.3), we differentiate with respect to both p and r
on both sides and find∫ ∞

0
x3 J ′n(px)2e−ax

2
dx = 1

4a2 e
−λ(λIn − 2λI ′n + I ′n + λI ′′n

)
= 1

4a2
(
λΓ′′n + Γ′n + Γn

)
. (A.12)

In the last step we have again used Equations A.9-A.10. This expression can be
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Integrals in parallel velocity

further simplified by using Bessel’s modified equation

λ2I ′′n + λI ′n − (λ2 + n2)In = 0 . (A.13)

We find that

λΓ′′n + Γ′n + Γn = n2Γn
λ
− 2Γ′nλ , (A.14)

which simplifies the integral to the form given in Equation A.3.

A.2 Integrals in parallel velocity

We consider integrals of the form

1√
2π

∫ ∞
−∞

xne−x
2/2

x− z dx , (A.15)

with n = 0, 1, 2 and 3. These integrals can be written in terms of the W (z)
function introduced in Ichimaru (1973)

W (z) = 1√
2π

∫ ∞
−∞

xe−x
2/2

x− z dx, (A.16)

where the W (z) function corresponds to the n = 1 integral. Using the partial
fractions

x

x− z = 1 + z
1

x− z , (A.17)

x2

x− z = x+ z
x

x− z , (A.18)

x3

x− z = x2 + z
x2

x− z = x2 + xz + z2 x

x− z , (A.19)

we can show that the relation betweenW (z) and the n = 0 integral is given by

W (z) = 1√
2π

[∫ ∞
−∞

e−x
2/2 dx+ z

∫ ∞
−∞

e−x
2/2

x− z dx

]
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A. Various derivations

= 1 + z√
2π

∫ ∞
−∞

e−x
2/2

x− z dx, (A.20)

or

1√
2π

∫ ∞
−∞

e−x
2/2

x− z dx = W (z)− 1
z

. (A.21)

The two remaining integrals, that we need to calculate the conductivity tensor in
Chapter 6, are then given by

1√
2π

∫ ∞
−∞

x2e−x
2/2

x− z dx = zW (z), (A.22)

1√
2π

∫ ∞
−∞

x3e−x
2/2

x− z dx = 1 + z2W (z). (A.23)

Using these integrals we observe that

√
2πvt,‖Al =

∫ ∞
−∞

vl‖e
−v2
‖/2v2

t,‖

nΩs + k‖v‖ − ω
dv‖ =

vlt,‖
k‖

∫ ∞
−∞

xle−x
2/2

x− z dx , (A.24)

where we have set x = v‖/vt,‖ such that dv‖ = vt,‖ dx. The four relevant integrals
are

A0 = 1
k‖vt,‖

W (ζn)− 1
ζn

, (A.25)

A1 = 1
k‖
W (ζn) , (A.26)

A2 =
vt,‖
k‖
ζnW (ζn) , (A.27)

A3 =
v2
t,‖
k‖

[
1 + ζ2

nW (ζn)
]
, (A.28)

where

ζn = ω − nΩs

k‖vt,‖
. (A.29)
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Integrals in parallel velocity

We find that the six independent components of Λ are given by

Λxx = 1− n2Ω2
s

k2
⊥

Γn
(
nΩs

v2
t,⊥

A0 +
k‖

v2
t,‖
A1

)
, (A.30)

Λxy = −inΩ2
s

k2
⊥
λΓ′n

(
nΩs

v2
t,⊥

A0 +
k‖

v2
t,‖
A1

)
, (A.31)

Λxz = −nΩs

k⊥
Γn
(
nΩs

v2
t,⊥

A1 +
k‖

v2
t,‖
A2

)
, (A.32)

Λyy = 1− v2
t,⊥

(
n2Γn
λ
− 2Γ′nλ

)(
nΩs

v2
t,⊥

A0 +
k‖

v2
t,‖
A1

)
, (A.33)

Λyz = i
Γ′n
k⊥

Ωsλ

(
nΩs

v2
t,⊥

A1 +
k‖

v2
t,‖
A2

)
, (A.34)

Λzz = 1− Γn
(
nΩs

v2
t,⊥

A2 +
k‖

v2
t,‖
A3

)
. (A.35)

Noting that

ζ0
ζn

= ω

ω − nΩs
, (A.36)

such that

nΩs

ω − nΩs
= ω

ω − nΩs
− 1 = ζ0

ζn
− 1 , (A.37)

as well as

nΩs

k‖vt,‖
= ζ0 − ζn , (A.38)

we find(
nΩs

v2
t,⊥

A0 +
k‖

v2
t,‖
A1

)
= 1
v2
t,⊥

[(
ζ0
ζn
− 1

)
(W − 1) +

v2
t,⊥
v2
t,‖
W

]
, (A.39)
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(
nΩs

v2
t,⊥

A1 +
k‖

v2
t,‖
A2

)
= 1
v2
t,⊥k‖

(
nΩsW (ζn) +

v2
t,⊥
v2
t,‖

(ω − nΩs)W (ζn)
)
,(A.40)

(
nΩs

v2
t,⊥

A2 +
k‖

v2
t,‖
A3

)
=
v2
t,‖

v2
t,⊥

(ζ0 − ζn)ζnW (ζn) + 1 + ζ2
nW (ζn) . (A.41)

Plugging this into our expression for Λ we then see that

Λxx = 1−
∞∑

n=−∞
n2 Γn

λ

[(
ζ0
ζn
− 1

)
(W − 1) +

v2
t,⊥
v2
t,‖
W

]
, (A.42)

Λxy = −
∞∑

n=−∞
inΓ′n

[(
ζ0
ζn
− 1

)
(W − 1) +

v2
t,⊥
v2
t,‖
W

]
, (A.43)

Λxz = −
∞∑

n=−∞
n

Γn√
λ

vt,‖
vt,⊥

[
(ζ0 − ζn)W +

v2
t,⊥
v2
t,‖
ζnW

]
, (A.44)

Λyy = 1−
∞∑

n=−∞

(
n2Γn
λ
− 2Γ′nλ

)[(
ζ0
ζn
− 1

)
(W − 1) +

v2
t,⊥
v2
t,‖
W

]
,(A.45)

Λyz =
∞∑

n=−∞
i
√
λΓ′n

vt,‖
vt,⊥

[
(ζ0 − ζn)W +

v2
t,⊥
v2
t,‖
ζnW

]
, (A.46)

Λzz = 1−
∞∑

n=−∞
Γn
[
v2
t,‖

v2
t,⊥

(ζ0 − ζn)ζnW (ζn) + 1 + ζ2
nW (ζn)

]
, (A.47)

along with Λyx = Λ∗yx, Λzx = Λ∗xz and so on.
We can simplify further by using the following sums (see Appendix A.3)

∞∑
n=−∞

n2 Γn(λ)
λ

= 1, (A.48)

∞∑
n=−∞

nΓ′n = 0, (A.49)

∞∑
n=−∞

Γ′n = 0. (A.50)

This means that we can add a term linear in Γnn in the expression for Λxz. This
will not contribute anything as the corresponding sum is zero. In the same way
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we can also add a term linear in Γ′n in Λyz. In Λzz we can add and subtract∑
n Γn

v2
t,‖
v2

t,⊥
ζnζ0 and perform the sum. These manipulations are done such that

all elements of the tensor Tn have a common factor.

A.3 Bessel function sums

The following sums are easy to find in the literature (see, e.g., Ichimaru 1973).

∞∑
n=−∞

Jn(λ)2 = 1 , (A.51)

∞∑
n=−∞

n2Jn(λ)2 = λ2

2 , (A.52)

e−λ
∞∑

n=−∞
In(λ) =

∞∑
n=−∞

Γn(λ) = 1 . (A.53)

There is however a particular sum that arises in the conductivity tensor which we
have been unable to find. The sum is

∞∑
n=−∞

n2In(λ), (A.54)

and we can find its value by using the Weber integral2

∫ ∞
0

xJn(px)2e−ax
2
dx = e−λ

2a In(λ) , (A.55)

to show that

∞∑
n=−∞

∫ ∞
0

xn2Jn(px)2e−ax
2
dx = e−λ

2a

∞∑
n=−∞

n2In(λ) , (A.56)

2The sum of the modified Bessel functions can be similarly derived using the Weber integral and
the sum over J2

n.
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which upon evaluating the sum on the LHS becomes

p2

2

∫ ∞
0

x3 e−ax
2
dx = e−λ

2a

∞∑
n=−∞

n2In(λ) . (A.57)

This integral can easily be solved and we find

∞∑
n=−∞

n2In(λ) = λeλ , (A.58)

or, as it appears in the conductivity tensor

∞∑
n=−∞

n2 Γ(λ)
λ

= 1 . (A.59)

A.4 Ichimaru’s plasma dispersion function

The standard plasma dispersion function is defined as

Z(ζ) = 1√
π

∫ ∞
−∞

e−x
2

x− z dx , (A.60)

by Fried and Conte (1961). TheW (z) function introduced in Ichimaru (1973) is
defined as

W (z) = 1√
2π

∫ ∞
−∞

xe−x
2/2

x− z dx . (A.61)

Using Equation A.20 they can be seen to be related by

W (z) = 1 + z√
2
Z(z/

√
2) . (A.62)

The small argument expansion ofW (z) is given by (Ichimaru 1973 equation 4.4)

W (z) ≈ i
√
π

2 z exp(−z2/2) + 1− z2 + z4

3 − . . . , (A.63)
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and the large argument expansion is given by (Ichimaru 1973 equation 4.6)

W (z) ≈ i
√
π

2 z exp(−z2/2)− 1
z2 −

3
z4 − . . . . (A.64)

A.5 Linearized Hall MHD equations

The linearized Hall MHD equations can be written as

δE = −δu×B + ηδJ + ηHδJ × b , (A.65)

δJ = µ−1
0 Bik × δb , (A.66)

−iωBδb+ ik × δE = 0 , (A.67)

−iω δ%
%

+ ik · δu = 0 , (A.68)

−iωδu+ ik
δ%

%
c2
s −B

δJ × b
%

= 0 , (A.69)

where the equations above are the linearized versions of Ohm’s law, Ampére’s law,
Faraday’s law, the continuity equation and the momentum equation, respectively.
In these equations b = B/B and δb = δB/B.

By substituting the expression for δJ into the momentum equation we find

−ωδu+ kδ%
%
c2
s − v2

a(k × δb)× b = 0 , (A.70)

where the Alfvén velocity is defined as

v2
a = B2

µ0%
. (A.71)

We also substitute δJ into Ohm’s law and find

δE = −δu×B + ηµ−1
0 Bik × δb+ ηHµ

−1
0 Bi(k × δb)× b . (A.72)

This expression for δE is then used in Faraday’s law

−ωδb+ k ×
(
−δu× b+ η

µ0
ik × δb+ ηH

µ0
i(k × δb)× b

)
= 0 . (A.73)
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Equations A.68, A.70 and A.73 can be written as an eigenvalue problem, see Equa-
tion 4.5 on page 46.

A.6 Hall conductivity tensor

We can also construct a conductivity tensor from the linearized Hall MHD equa-
tions. We start out by noting that the continuity equation can be written as

k
δ%

%
= 1
ω
kk · δu . (A.74)

We use this to write the momentum equation as

−ωδu+ c2
s

ω
kk · δu+ iB

δJ × b
%

= 0 , (A.75)

which can be manipulated to yield

[
c2
skk − ω21

]
· δu = iBω

%
b× δJ , (A.76)

or

δu = iBω

%

[
c2
skk − ω21

]−1
· (b× 1) · δJ , (A.77)

where

b× 1 =


0 −bz by

bz 0 −bx
−by bx 0

 . (A.78)

Ohm’s law can be written as

δE = B × δu+ ηδJ − ηHb× δJ , (A.79)
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or, upon substitution of δu from the momentum equation

δE = ηδJ + (b× 1)
(
iB2ω

%

[
c2
skk − ω21

]−1
· (b× 1)− ηH1

)
· δJ . (A.80)

Now, the conductivity tensor is defined as

δJ = σ · δE , (A.81)

so that we can read off σ−1 directly as

σ−1 = η1 + µ0v
2
a(b× 1)

(
iω
[
c2
skk − ω21

]−1
· (b× 1)− Ω−11

)
. (A.82)

Here we have used the Alfvén velocity, v2
a = B2/µ0%, and ηH = µ0v

2
a/Ω to

rewrite the expression slightly. The plasma dispersion relation is given by det D =
0 where D · δE = 0 and

D = k21− kk − iωµ0σ . (A.83)

It turns out that inverting σ−1 in order to obtain σ is tricky when η = 0 as the
determinant of σ−1 is zero. This happens because the relation between δEz and
δJz is undetermined when η = 0. A 2× 2 submatrix which describes the relation
between δJ and δE in the xy-plane is however invertible.

Instead of dealing with this problem we will instead simply rewrite the disper-
sion relation as

D = σ−1 ·
(
k21− kk

)
− iωµ01 . (A.84)

We note that the conductivity tensor is sometimes defined as

δJ = σ · (δE + u×B) , (A.85)

such that the current is proportional to the electric field in the frame of the plasma,
i.e., δJ = σ ·δE′ where δE′ = δE+u×B is the electric field in the frame of the
plasma, see, e.g., Somov (2006). We have opted to define the conductivity tensor
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as δJ = σ · δE such that the dispersion relation can be written as in Equation
A.83, i.e., in the same way as in Chapter 5.

A.7 Divergence of B

For a three-dimensional code with i, j and k being indices in the x, y and z direc-
tion the curl is approximated as

∇̃ × fi,j,k =
(
δy〈·〉x〈·〉zfzi,j,k − δz〈·〉x〈·〉yfyi,j,k

)
ex (A.86)

+
(
δz〈·〉x〈·〉yfxi,j,k − δx〈·〉y〈·〉zfzi,j,k

)
ey (A.87)

+
(
δx〈·〉y〈·〉zfyi,j,k − δy〈·〉x〈·〉zfxi,j,k

)
ez , (A.88)

and the divergence is approximated as

∇̃ · fi,j,k = δx〈·〉y〈·〉zfxi,j,k + δy〈·〉x〈·〉zfyi,j,k + δz〈·〉x〈·〉yfzi,j,k , (A.89)

for an interlaced grid. Here we have introduced finite difference operator notation
(see for instance the appendix of Durran 2010)

δnxfi,j,k =
fi+n/2,j,k − fi−n/2,j,k

n∆x , (A.90)

δnyfi,j,k =
fi,j+n/2,k − fi,j−n/2,k

n∆y , (A.91)

δnzfi,j,k =
fi,j,k+n/2 − fi,j,k−n/2

n∆z , (A.92)

and an interpolation operator with the following properties

〈fi,j,k〉x = 〈·〉xfi,j,k =
fi+1/2,j,k + fi−1/2,j,k

2 , (A.93)

〈fi,j,k〉y = 〈·〉yfi,j,k =
fi,j+1/2,k + fi,j−1/2,k

2 , (A.94)

〈fi,j,k〉z = 〈·〉zfi,j,k =
fi,j,k+1/2 + fi,j,k−1/2

2 , (A.95)
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to write the finite difference approximations to the first order derivatives along x,
y and z.

Now

∇̃ ·
(
∇̃ × fi,j,k

)
= δx〈·〉y〈·〉z

(
δy〈·〉x〈·〉zfzi,j,k − δz〈·〉x〈·〉yfyi,j,k

)
+

δy〈·〉x〈·〉z
(
δz〈·〉x〈·〉yfxi,j,k − δx〈·〉y〈·〉zfzi,j,k

)
+

δz〈·〉x〈·〉y
(
δx〈·〉y〈·〉zfyi,j,k − δy〈·〉x〈·〉zfxi,j,k

)
,

(A.96)

can also be written as

δy〈·〉x〈·〉zδz〈·〉x〈·〉yfxi,j,k − δz〈·〉x〈·〉yδy〈·〉x〈·〉zfxi,j,k +

δz〈·〉x〈·〉yδx〈·〉y〈·〉zfyi,j,k − δx〈·〉y〈·〉zδz〈·〉x〈·〉yfyi,j,k +

δx〈·〉y〈·〉zδy〈·〉x〈·〉zfzi,j,k − δy〈·〉x〈·〉zδx〈·〉y〈·〉zfzi,j,k = 0 ,

(A.97)

as the operators commute. For the finite difference and interpolation operators
introduced above it is an exact cancellation of 384 terms. The proof outlined above
however works for any interpolation or finite difference approximation, as long
as the operations commute.
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ABSTRACT

Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems
in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not
account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport
of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy
can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous
media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-art
Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are
unstable to different kinds of instabilities depending on the magnetic field orientation at all radii. The fastest
growing modes are usually related to generalizations of the magnetothermal instability (MTI) and the heat-flux-
driven buoyancy instability which operate in heterogeneous media. We find that the effect of sedimentation is to
increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow quickly
compared to the sedimentation timescale. This suggests that the composition gradients as inferred from
sedimentation models, which do not fully account for the anisotropic character of the weakly collisional
environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas
dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium
sedimentation beyond current models.

Key words: diffusion – galaxies: clusters: intracluster medium – instabilities – magnetohydrodynamics (MHD)

1. INTRODUCTION

Galaxy clusters are important astrophysical probes since
their masses can be used to constrain cosmological parameters
(Mantz et al. 2014 and references therein). The distribution of
mass as a function of radius can be inferred by modeling the
observed X-ray emission produced by Bremsstrahlung in the
hot intracluster medium (ICM). The intensity of the emission
depends on the radial distribution of temperature and density,
as well as the composition of the gas. While the temperature of
the ICM is reasonably well determined (Vikhlinin et al. 2006),
the composition of the plasma is not. The reason for this is that
many of the elements are completely ionized at the character-
istic temperatures of the ICM, and thus their abundances cannot
be directly inferred. Therefore, the interpretation of the X-ray
data normally relies on assuming a model for the composition
of the gas. A widely adopted approximation consists of
assuming the composition of the plasma to be uniform (see
Bulbul et al. 2011 for an analysis where this assumption is
relaxed). Elements heavier than hydrogen are expected to
sediment over cosmological timescales (Fabian & Prin-
gle 1977), therefore the assumption of a homogeneous ICM
relies on this process being inefficient. Turbulence and tangled
magnetic fields, or a combination of both, have been invoked as
potential agents (Markevitch 2007).

Even though the mass ratio between Helium (He) and
Hydrogen (H) is small, because He is the most abundant of the
heavy elements, it has the potential to induce significant
variations in the mean molecular weight. If He sedimentation
does take place and this is not accounted for when modeling
galaxy clusters, this could induce biases in the cosmological
parameters derived (Qin & Wu 2000; Markevitch 2007; Peng
& Nagai 2009). This could prove to be a problem for precision

cosmology and highlights the importance of understanding the
distribution of heavy elements in the ICM (Fabian &
Pringle 1977; Gilfanov & Syunyaev 1984; Chuzhoy &
Nusser 2003; Chuzhoy & Loeb 2004; Peng & Nagai 2009;
Shtykovskiy & Gilfanov 2010). Most of the previous work on
this subject is based on solving Burgers’ equations for a
multicomponent plasma (Burgers 1969; Thoul et al. 1994) and
all of these assume spherical symmetry in order to predict the
composition of the ICM as a function of radius. Studies
addressing the long term evolution of the composition of the
ICM have considered the dynamical effects of magnetic fields
in a rather crude way, usually encapsulating their effects in a
parameter that regulates the slow down of the sedimentation
process (Peng & Nagai 2009).
A more recent, and somewhat parallel, line of developments

has helped us realize that the dynamical properties of
magnetized, weakly collisional, stratified plasmas can be rather
subtle. Balbus (2000, 2001) and Quataert (2008) showed that
stratified plasmas that are stable according to the Schwarzschild
criterion could turn unstable due to the presence of a magnetic
field, even if its strength is too weak to be mechanically
important. The plasma can become unstable because even a
very weak magnetic field can effectively alter transport
processes by channeling electrons and ions, leading to
anisotropic heat conduction and Braginskii viscosity (Brag-
inskii 1965; Kunz 2011).
Previous studies have considered plane-parallel, fully

ionized homogeneous atmospheres with a temperature gradient
in the direction of gravity. In this setting there are two
instabilities that feed on the gradient in temperature. The
Magnetothermal Instability (MTI) has the fastest growth rate
when the magnetic field is perpendicular to gravity and the
temperature decreases with height (Balbus 2000, 2001). The
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Heat-flux-driven Buoyancy Instability (HBI) has the fastest
growth rate when the magnetic field is parallel to gravity and
the temperature increases with height (Quataert 2008). Because
of the temperature profiles observed in typical cool-core galaxy
clusters (Vikhlinin et al. 2006), the MTI is believed to be active
in the outer parts of the ICM while the HBI is believed to be
relevant in the inner parts of the ICM. These instabilities have
been studied extensively in the literature both analytically
(Balbus 2000, 2001; Quataert 2008; Kunz 2011; Latter &
Kunz 2012) and numerically with initially local simulations
with anisotropic heat conduction (Parrish & Stone 2005, 2007;
Parrish & Quataert 2008) and since then with elaborate
physical models (Parrish et al. 2008, 2009; Bogdanović
et al. 2009; Parrish et al. 2010; Ruszkowski & Oh 2010;
McCourt et al. 2011, 2012; Kunz et al. 2012; Parrish
et al. 2012a, 2012b).

The aforementioned works that deal with the weakly
collisional character of the magnetized plasma have usually
adopted a homogeneous atmosphere as a model for the ICM.
On the other hand, the sedimentation models are usually one-
dimensional and do not fully account for dynamical properties
of the magnetic field. In an effort to better understand the
interplay between the Helium distribution in the ICM and its
weakly collisional and weakly magnetized nature, Pessah &
Chakraborty (2013) considered the presence of a gradient in the
Helium composition and extended previous stability criteria.
Their work shows that a gradient in composition can modify
the stability properties of a stratified atmosphere. This could
have consequences for the Helium sedimentation models which
could be unstable to plasma instabilities.

The equations used to model the plasma in Pessah &
Chakraborty (2013) describe the stability properties of a
weakly collisional plasma subject to a background composition
gradient, but they do not account for the process of Helium
sedimentation which is estimated to occur on longer time-
scales.1 Because of this, the equations are thus unable to predict
how a gradient in composition arises from an initial homo-
geneous plasma. A framework that simultaneously considers
the physics responsible for Helium sedimentation together with
the anisotropic transport properties governing dilute, magne-
tized plasmas has yet to be developed. A key goal for the future
is therefore to develop such a model in order to determine from
first principles the rate at which Helium can sediment in a
weakly collisional, magnetized medium. In lieu of such a fully
consistent theory, this paper has a more modest goal. Our aim
is to understand the kind of instabilities, and their associated
timescales and length scales, that can feed off the temperature
and composition profiles that emerge from state-of-the-art
models for Helium sedimentation in the ICM (Peng &
Nagai 2009; Shtykovskiy & Gilfanov 2010).

The rest of the paper is organized as follows. In Section 2,
we introduce the equations that we use to model the weakly
collisional three-component plasma. In Section 3, we derive an
extended version of the dispersion relation presented by Pessah
& Chakraborty (2013) to account for the effects of magnetic
tension, which can be important in cluster cores. In Section 4,
we discuss the stability criteria for atmospheres with tempera-
ture and composition gradients. In Section 5, we solve the
dispersion relation for isothermal atmospheres in order to gain
insight into the type of instabilities that can be excited solely by

composition gradients. In Section 6, we consider the
temperature and composition gradients derived from the
Helium sedimentation model of Peng & Nagai (2009). By
allowing the background magnetic field to have an arbitrary
inclination with respect to gravity we identify the most relevant
instabilities in different regions of the ICM. Finally, we
conclude by discussing future prospects for addressing the
problem of Helium sedimentation in galaxy clusters on more
fundamental grounds in Section 7.

2. THE EQUATIONS OF KINETIC MHD
FOR A BINARY MIXTURE

The kinetic MHD equations for a fully ionized binary
mixture of Hydrogen and Helium can be written as (Pessah &
Chakraborty 2013)

v
t

0, 1· ( ) ( )r
r

¶
¶

+ =

v
vv I bb g

t
P

B

4
, 2T

2
· ·( ) ˆ ˆ ( )⎛

⎝⎜
⎞
⎠⎟ r
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r
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¶

+ + - = - P +
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, 3( ) ( )´ ´¶

¶
=

Q v
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: , 4s· ( ) r

m
= - - P

Q
dc

dt
. 5c· ( )= -

Here, the Lagrangian and Eulerian derivatives are related via
vd dt t ,·= ¶ ¶ +  ρ is the mass density, v is the fluid

velocity, g g0, 0,( )= - is the gravitational acceleration, and I
stands for the 3 × 3 identity matrix. The symbols^ and refer,
respectively, to the directions perpendicular and parallel to the
magnetic field B whose direction is given by the unit vector b̂ =
B B b b, 0, .x z( )= The total pressure is P P B 8 ,T

2 p= +
where P is the thermal pressure and the entropy per unit mass is
defined by

s
k

m
P

3

2
ln , 6B

H

5 3( ) ( )r= -

where kB is Boltzmannʼs constant and mH is the proton mass.
The adiabatic index, γ, has been set to 5/3 in the preceding
equations and throughout the remainder of the paper.
The composition of the plasma, c, is defined to be the ratio of

the Helium density to the total gas density

c . 7He

H He

( )r
r r

=
+

The associated mean molecular weight, μ, influences the
dynamics of the plasma through the equation of state

P
k T

m
, 8B

H
( )r

m
=

where T is the temperature. We assume a completely ionized
plasma consisting of Helium and Hydrogen and the mass
concentration of Helium, c, is therefore related to the mean1 We discuss the limitations of this work in this regard in Appendix A.1.
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molecular weight, μ, by

c

4

8 5
. 9( )m =

-

The evolution of the binary mixture is influenced by three
different non-ideal effects, namely Braginskii viscosity, which
is described through the viscosity tensor (Braginskii 1965)

bb I bb I v3
1

3

1

3
: , 10ˆ ˆ ˆ ˆ ( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ rnP = - - -

anisotropic heat conduction described by the heat flux (Spitzer
1962; Braginskii 1965)

Q bb T , 11s
ˆ ˆ · ( )c= - 

and anisotropic diffusion of Helium described by the
composition flux

Q bbD c. 12c
ˆ ˆ · ( )= - 

The transport coefficients ( ,c ,n and D) all depend on the
temperature, as well as the composition of the plasma. The
dependences are given in Appendix B by Equations (64)–(66),
respectively. For more details on the kinetic MHD approxima-
tion and its limitations see the relevant discussions in Kunz
et al. (2012), Schekochihin et al. (2005), Pessah & Chakraborty
(2013) and references therein.

3. THE DISPERSION RELATION

We consider an initially motionless, plane-parallel atmo-
sphere with gradients in both temperature and the mean
molecular weight. A local linear mode analysis of this
atmosphere, using Equations (1)–(5) and following the
procedure in Pessah & Chakraborty (2013), leads to the
dispersion relation

A B 0, 13
i

i
i

i
0

4

v
1

5

( )å åw+ =
= =

where the coefficients are given by

A k , 140
2 4 2˜ ( )s s=

A k , 15D c1
4 2˜ ( ) ( )ss w w= +

A N k k k , 16x y c D2
2 2 2 2 2 4 2( )˜ ˜ ( )s s s w w= + +

A g
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d
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k k

N k k

ln ln
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2 2 2

2 2 2 2
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˜
˜ ( )

⎧⎨⎩
⎫⎬⎭ss w

m

ss w

= - +

+ +

A N , 18c D T4
2 2˜ ( )s w w= m

B k , 191
3 2 2˜ ( )s s= ^

B k , 20D c2
2 2 2˜ ( ) ( )s s w w= + ^

B b k N k , 21x y c D3
3 2 2 2 2 2˜ ( )s ss w w= + ^

B b k N N , 22x y T c D4
2 2 2 2 2( ) ( )s w w= +m
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Here, b kk ·ˆ= and k k k2 2 2= -^  and we have defined
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which are the inverse timescales associated with anisotropic
heat conduction, viscosity, and particle diffusion. Furthermore,
we have introduced the quantity

b k k b b k k1 2 2 , 25z x y x z x z
2 2 2( )( ) ( ) = - + +

as well as the Brunt−Väisälä frequency, N, such that

N
m

k
g

ds

dz

2

5
, 262 H

B
( )=

and the quantity

N g
d

dz

T
ln . 27T

2 ( )⎛
⎝⎜

⎞
⎠⎟m

=m

The effects of magnetic tension, which are neglected in
Pessah & Chakraborty (2013) and could be important in the
inner parts of the ICM (Carilli & Taylor 2002), are contained in

, 282 2
A
2˜ ( )s s w= +

where

k v , 29A A ( )w = 

is the Alfvén frequency and v B 4A pr= is the Alfvén
velocity.

3.1. Characteristic Scales and Dimensionless Variables

There are a number of characteristic scales that are useful to
introduce. The dynamical frequency, ,dynw is given by

g

H
, 30dyn ( )w =

where H is the thermal pressure scale height and g is the
gravitational acceleration. We will use that hydrostatic
equilibrium requires

g
d P

dz

ln
. 31dyn

2 ( )w= -

The plasma-β, given by the ratio of the thermal velocity and the
Alfvén speed squared v v ,th

2
A
2b = where v P ,th

2 r= provides a
measure of the strength of the magnetic field.
We also define the Knudsen number

H
Kn , 32

mfp ( )l
=

which is a measure of the collisionality of the plasma. Here,
mfpl is the mean-free-path of ion collisions. Intuitively,

HKn 1
mfpl=- is the average number of collisions an ion

experiences as it traverses a distance of one scale height. So
Kn 11-  (Kn 11-  ) corresponds to high (low) collisionality.
As in Pessah & Chakraborty (2013), we define an effective ion-
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ion collision frequency

v

2
, 33ii

eff th
2

( )n
n

=


which can be used to express the inverse Knudsen number as

Kn , 34ii1
eff

dyn
( )n

w
=-

by using that v .iimfp th
effl n=

In Section 5, it will prove useful to use a dimensionless form
of the theory and present the results in terms of variables that
have been scaled using the characteristic time provided by dyn

1w-

and the characteristic length given by H .mfp
1 2( )l In order to

accomplish this, we assume that the inverse timescales for heat
conduction and Braginskii viscosity are related to the
dynamical frequency via (Kunz 2011)

k H10 , 35c
2

mfp dyn ( )w l w 

k H
3

2
. 36v

2
mfp dyn ( )w l w 

When diffusion of Helium is included in the analysis we
furthermore assume that

k H
1

4
. 37D

2
mfp dyn ( )w l w 

The approximations given by Equations (35)–(37) are justified
in Appendix A.2.

Note that the local linear analysis leading to the dispersion
relation in Pessah & Chakraborty (2013) is only valid when the
wavenumbers involved satisfy the inequalities

k HKn Kn , 38mfp
1 2 1( ) ( )l - 

k H
1

10 Kn
Kn . 39mfp

1 2( ) ( )
b

l b 

The dispersion relation in Equation (13) is also valid even
when the inequality given by Equation (39) is not fulfilled
because the effects of magnetic tension, which are proportional
to the product Knb in dimensionless variables, are included in
its derivation. The dispersion relation is, however, still only
adequate for describing scales that are both much longer than
the mean-free-path of ion collisions (the fluid limit) and much
shorter than the scale height of the atmosphere considered (the
local limit). The modes of interest therefore need to fulfill
Equation (38).

In the resulting dimensionless variables the gradients in the
temperature and the mean molecular weight enter as
d T d Pln ln and d d Pln ln ,m making it easier to compare
the results of this paper with previous work (Pessah &
Chakraborty 2013).

4. STABILITY PROPERTIES

The stability criterion for a stratified collisional atmosphere
is known as the Schwarzschild criterion (Schwarzschild 1958).
According to this criterion, the plasma is stable if the entropy
increases with height, z, i.e., if

ds

dz
0. 40( )>

If the atmosphere is stratified in temperature and composition,
the criterion determining the stability of the atmosphere
becomes

d T

d P

ln

ln

2

5
. 41( )m

<

This is the Ledoux criterion known from stellar convection
theory (Ledoux 1947). Isothermal atmospheres with

d

d P

ln

ln

2

5
, 42( )m

> -

are therefore stable according to the Ledoux criterion. On the
other hand, atmospheres with a uniform composition need to
fulfill

d T

d P

ln

ln

2

5
. 43( )<

If Equation (41) is not fulfilled a fluid element that is perturbed
upwards (downwards) will expand (contract) and continue to
rise (sink). We will refer to this type of instability as gravity
modes.
Atmospheres that satisfy the Ledoux criterion for stability

(which assumes that the plasma is collisional) are seen
to be unstable when transport processes are anisotropic
in a weakly collisional plasma. When anisotropic heat
conduction is taken into account, isothermal atmospheres with

d d P2 5 ln ln 0m- < < are unstable regardless of the
magnetic field inclination with respect to gravity. When
anisotropic particle diffusion is considered even atmospheres
with d d Pln ln 0m > can become unstable.
The analysis carried out in Pessah & Chakraborty (2013)

shows that there are a host of instabilities that can feed off
temperature and composition gradients (see their Figures 2 and
4 for an overview of their results). Here, we focus our attention
on the instabilities that have the dominant growth rates for the
cluster model of Peng & Nagai (2009) in the regime in which
heat conduction is fast with respect to the dynamical timescale,
i.e., .c dynw w For convenience, we summarize here some of
the most relevant features of these instabilities.

1. The Magneto-thermo-compositional Instability (MTCI)
has its fastest growth rate when the magnetic field is
perpendicular to the direction of gravity. In the limit of a
weak magnetic field the MTCI stability criterion is

d T

d P
b

ln

ln
0 if 0. 44x ( )m

> ¹

As pointed out in Pessah & Chakraborty (2013), this
criterion for stability is not affected by anisotropic
particle diffusion. This feature of the MTCI is explained
in further detail in Section 5.2.1.

2. The Heat- and Particle-flux-driven Buoyancy Instability
(HPBI) has its fastest growth rate when the magnetic field
is parallel to the direction of gravity. If we ignore particle
diffusion and magnetic field tension, the HPBI stability
criterion is

d T

d P
b

ln

ln
0 if 0, . 45z D dyn ( )m

w w> ¹ 

Note that even if this criterion is fulfilled, overstable
modes might be present, see Equation (57) in Pessah &
Chakraborty (2013).
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3. The diffusive HPBI, which depends on anisotropic
diffusion of particles, has its fastest growth rate when
the magnetic field is parallel to the direction of gravity.
The diffusive HPBI ( 0Dw ¹ ) has a stability criterion
which is qualitatively different from the non-diffusive
HPBI ( 0Dw = ). The criterion for stability for the
diffusive HPBI is

d T

d P
b

ln

ln
0 if 0, . 46z D dyn ( )m

w w> ¹ 

4. A type of instability driven by anisotropic diffusion of
Helium, which we refer to as diffusion modes, also
depend on 0.Dw ¹ Diffusion modes have their fastest
growth rate when the magnetic field is parallel to the
direction of gravity. The stability criterion for diffusion
modes is2

d T

d P

d

d P
b

ln

ln

ln

ln
if 0, 0. 47z D ( )m

w> ¹ ¹

When the mean molecular weight is constant, Equation (44)
reduces to the stability criterion for the MTI and Equations (45)
and (46) both reduce to the stability criterion for the HBI.
These instabilities, driven by thermal gradients in weakly
collisional, homogeneous plasmas, have been studied in great
detail (Balbus 2000, 2001; Parrish & Stone 2005, 2007; Parrish
& Quataert 2008; Parrish et al. 2008; Quataert 2008;
Kunz 2011; Kunz et al. 2012; Latter & Kunz 2012; Parrish
et al. 2012a).

Before considering the instabilities that are present when the
temperature and composition gradients are those obtained from
current sedimentation models, we consider a series of simpler
cases in order to build our intuition.

5. APPLICATION TO ISOTHERMAL ATMOSPHERES

In order to shed light on the instabilities that are driven by
composition gradients we focus our attention on the case of
isothermal atmospheres in which the mean molecular weight
increases with height. For these atmospheres, the stability

criteria for the HPBI and the MTCI, Equations (45) and (44),
both reduce to d d Pln ln 0.m > In the following we analyze
simple magnetic field geometries and assume, for simplicity,
that the magnetic field strength is negligible and thus 0.Aw =
In this section, we calculate the growth rates associated with
axisymmetric modes as a function of the wavenumbers kx and
kz. Here, kx is the wavenumber perpendicular to gravity and kz
is the wavenumber parallel to gravity. The latter corresponds to
the radial direction in the ICM. We relate our results to the
findings of Kunz (2011), who analyzed the MTI and the HBI in
detail.

5.1. Isothermal Atmospheres with No Particle Diffusion

We solve the dispersion relation, Equation (13), for an
isothermal atmosphere with a gradient in composition in the
limit where diffusion of particles is neglected ( 0Dw = ).

5.1.1. Magnetic Field Perpendicular to Gravity

We start out by considering the configuration where the
MTCI is maximally unstable, namely, a horizontal magnetic
field, i.e., b 1.x = We consider an atmosphere with
d d Pln ln 1 3.m = - This atmosphere is stable according
to the Ledoux criterion, Equation (42), which means that it
would be stable if the plasma were collisional. However, it is
unstable according to the MTCI criterion that applies in the
weakly collisional regime.
There is an interesting correspondence between the MTI and

MTCI, which is useful in order to make connections with
previous results. In order to illustrate this, let us ignore particle
diffusion of He ( 0Dw = ). In this case, the dispersion
relation given by Equation (13) only depends on the gradients
in temperature and mean molecular weight through the
combination d T d Pln ln .( )m This means that the dispersion
relation for the MTCI at constant temperature with
d d Pln ln 1 3,m = - is identical to the dispersion relation
for the MTI with d T d Pln ln 1 3.= The crucial difference
is of course that in the former case the instabilities are driven by
the temperature gradient, whereas in the latter case they are
driven by the composition gradient.
The correspondence between MTI and MTCI is illustrated in

Figure 1, where we show the growth rate of unstable modes
when d d Pln ln 1 3m = - and obtain a similar result as
Kunz (2011) did for the MTI with d T d Pln ln 1 3.= In the

Figure 1. Contour plots of dyns w for the MTCI with d d Pln ln 1 3m = -
without (left) and with Braginskii viscosity (right). Because of the similarity
between the MTI and the MTCI these figures are similar to Figure 5 in
Kunz (2011).

Figure 2. Contour plots of dyns w for the HPBI with d d Pln ln 1m = -
without (left) and with Braginskii viscosity (right). The qualitative behavior is
similar to the HBI but the maximum growth rates are located at smaller
k H .z mfp

1 2( )l Gravity modes are seen at low k H .z mfp
1 2( )l

2 There is a typo in the text below Equation (63) in Pessah & Chakraborty
(2013) where the stability criterion is missing an absolute value sign acting on
the left hand side of the inequality. This typo does not affect any conclusions or
figures in their paper.
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left panel of Figure 1, Braginskii viscosity is not included and
the maximum growth rate has k 0.z = The maximum growth
rate of 0.5dyns w = is confined to a wedge in wavenumber
space with k k0.5 .z x In the right panel of Figure 1, Braginskii
viscosity is included and the growth rate of 0.5dyns w = is
now confined to a thin band with k H 0.3.z mfp

1 2( ) l We
observe that the growth rates are only significant when
k H k H .z xmfp

1 2
mfp

1 2( ) ( )l l This preference for parallel
wavenumbers (k k ,max »  where kmax is the wavenumber for

maxs ) is thoroughly investigated by Kunz (2011). Due to the
identical dispersion relations for the MTI and the MTCI at
constant temperature, we therefore refer to Equations (62)
(without Braginskii viscosity) and (64) (with Braginskii
viscosity) in Kunz (2011) for approximate limits on the
magnitude of k̂ above which the growth rates become
negligible.

5.1.2. Magnetic Field Parallel to Gravity

Next, we consider the case of b 1,z = i.e., a vertical magnetic
field, where the HPBI is maximally unstable. The growth rate
for the HPBI as a function of wavenumber is shown in Figure 2
for the case of d d Pln ln 1.m = -

In the left panel of Figure 2, Braginskii viscosity is not
included and the large growth rates are confined to k k .z x In
the right panel of Figure 2, Braginskii viscosity is included and
the preference for k k^   is increased. The growth rate of

0.8dyns w = is now confined to k H0.05 0.3.z mfp
1 2( ) l

We conclude that the HPBI favors wavenumbers that have a
large perpendicular component and that the available wave-
number space is a narrow band with k k^   when Braginskii
viscosity is included in the analysis.

Figure 2 looks remarkably similar to the corresponding
figure for the HBI (with d T d Pln ln 1= - ) presented in
Kunz (2011) but they are not identical at low k H .z mfp

1 2( )l
Even though the HBI and HPBI both have the property that

0s = for k 0= we observe that 0.7dyns w » along the line
of k 0= in both the left and right panels of Figure 2. The
explanation is that gravity modes are unstable for different
signs of the logarithmic derivatives of T and μ, as seen
in Equations (42) and (43). The growth rate of gravity modes
for d d Pln ln 1m = - at these wavenumbers has the
value 0.7.dyns w » The reason for gravity modes at low

k Hz mfp
1 2( )l is that heat conduction is too slow to drive the

HPBI when kP is small. The gravity modes do not depend on
heat conduction and they are therefore dominant in this slow
conduction limit.
The gravity modes are not seen at high k Hz mfp

1 2( )l because
they are damped by Braginskii viscosity. Even though the
HPBI is also damped by Braginskii viscosity, the HPBI turns
out to have a higher growth rate than the gravity modes at high
k H .z mfp

1 2( )l Gravity modes are present even in the absence of
anisotropic transport, as illustrated in the left panel of Figure 3.
The damping of gravity modes by Braginskii viscosity is
demonstrated in the right panel of Figure 3.
An important conclusion in Kunz (2011) is that the local

mode analysis for the HBI is not strictly valid when Braginskii
viscosity is taken into account because the largest growth rates
are obtained for k H ,1< -

 implying that Equation (38) is not
satisfied. The HPBI has its maximum growth rate at even
longer wavelengths than for the HBI and we therefore reach a
similar conclusion for the HPBI at constant temperature as
Kunz (2011) did for the HBI. A quasi-global model has been
developed for the HBI by Latter & Kunz (2012). This kind of
approach can also be generalized to develop quasi-global
models including composition gradients.

5.1.3. More General Magnetic Field Geometries

In this section, we explore the consequences of the presence
of a magnetic field which is inclined at an angle θ with respect
to the horizontal. The components of b̂ are thus given by
b cosx q= and b sin .z q= In the previous two sections, and in
agreement with Kunz (2011), we showed that Braginskii
viscosity can play a significant role in the growth of modes
driven by composition gradients. Therefore, we include both
anisotropic heat conduction and Braginskii viscosity in our
analysis.
We consider an atmosphere with d d Pln ln 1m = - which

is maximally unstable to the MTCI when 0q = ° and to the
HPBI when 90q = °. Figure 4 shows the unstable modes that
emerge as the inclination of the magnetic field is varied,
increasing from 0q = ° in the leftmost panel to 90q = ° in the
rightmost panel. The directions of k k=  and k k= ^ are
indicated with a red solid line and a red dashed line,
respectively. In the previous sections we argued that the MTCI
has its maximum growth rate for wavenumbers with k k̂
while the HPBI has its maximum growth rate for k k .^   This
provides an intuitive way to interpret Figure 4 which illustrates
that the isothermal atmosphere is unstable regardless of the
magnetic field inclination, θ.
The results displayed in Figure 4 can be analyzed further

with the insights gained earlier in this section. Only the MTCI
is unstable in the first panel ( 0q = °) and the most unstable
wavenumbers lie in a band along k k 0.z = =^ In the second
panel, this unstable band is rotated to lie along 30q = °, which
is the angle of k with respect to the horizontal. At the same
time, a new unstable band has appeared in the direction k k .= ^
This is the HPBI which prefers k k .^   We note again that
both the MTCI and the HPBI have zero growth rate along
k 0= (the dashed line) and so the growth rates seen along this
line must be due to gravity modes.
In the third panel ( 45q = °), both unstable bands have

rotated by another 15°. The maximum growth rate of the
HPBI (MTCI) unstable band has increased (decreased) to

0.6dyns w = ( 0.7dyns w = ). The maximum growth rate is

Figure 3. Contour plots of dyns w for gravity modes with d d Pln ln 1m = -
which appear even without anisotropic transport. Left: Without Braginskii
viscosity and the growth rate of gravity modes is independent of the magnetic
field inclination. Right: With Braginskii viscosity and the gravity modes with
k H 2z mfp

1 2( ) l have negligible growth rate due to damping by Braginskii
viscosity. The damping depends on the magnetic field inclination which is
taken to be 90q = °.
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found in a region around k 0z = and it difficult to associate this
wavenumber with a specific instability. In the fourth panel
( 75q = °), the maximum growth rate of the HPBI unstable
band has increased even further and it is now larger than the
maximum growth rate of the MTCI whose growth rate has
decreased down to 0.3.dyns w = In the final panel ( 90q = °),
the MTCI is completely stabilized and only the modes
associated with the HPBI remain.

5.2. Diffusion of Helium

In this section, we consider the stability properties of a
weakly collisional, weakly magnetized, binary plasma with
Braginskii viscosity and anisotropic diffusion of particles. We
focus our attention on isothermal atmospheres that are stratified
in composition.

5.2.1. An Atmosphere with d d Pln ln 1m = -

We start out by considering an atmosphere with
d d Pln ln 1m = - which is unstable to gravity modes. When
the effect of anisotropic diffusion of He is ignored, this
atmosphere is generally unstable to both the MTCI and the

HPBI, as shown in the previous section. In this section
diffusion of particles is included in the analysis.
The anisotropic diffusion of He enables a number of new

processes (Pessah & Chakraborty 2013). First and foremost, a
new type of instabilities, termed diffusion modes, appear.
These modes only exist due to anisotropic diffusion of Helium
and their growth rate increase with the value of the diffusion
coefficient, D. Second, a new type of instability, termed the
diffusive HPBI (Pessah & Chakraborty 2013) appears in place
of the HPBI when .D dynw w
The stability criterion for the MTCI is unaffected by the

presence of particle diffusion, as seen in Equations (60) and
(68) in Pessah & Chakraborty (2013). The fact that the stability
criterion of the MTCI is unaffected can be understood
intuitively by considering a fluid parcel moving upwards in a
gravitational potential while being connected to its previous
surroundings by a magnetic field line. The vertical displace-
ment of the parcel gives rise to an expansion of the parcel. In
the the absence of heat transfer to the parcel this expansion
would lead to a decrease in the temperature. Due to anisotropic
heat conduction, however, the magnetic field line is effectively
an isotherm. The parcel is therefore heated from below,

Figure 4. Contour plots of dyns w for an isothermal atmosphere with d d Pln ln 1,m = - with Braginskii viscosity. The red solid line indicates k k=  and the red
dashed line indicates k 0.= The MTCI has its maximum growth rate for k k=  and the HPBI has its maximum growth rate with a small parallel component (k k ).
The inclination of the magnetic field is written in degrees at the top, left corner in each panel.

Figure 5. Contour plots of dyns w for an isothermal atmosphere with d d Pln ln 1,m = - with Braginskii viscosity and particle diffusion. The red solid line
indicates k k=  and the red dashed line indicates k 0.= The inclination of the magnetic field is written in degrees at the top, left corner in each panel. From left to
right: The MTCI at constant temperature is weakened as the magnetic field becomes more vertical. It has its fastest growing modes along k k .=  The slow diffusion
modes and the diffusive HPBI are maximally unstable when the magnetic field is vertical. They are visible from the second figure and onwards. In the last figure the
field is entirely vertical and the MTCI is stabilized. The instabilities that remain are the slow diffusion modes, the diffusive HPBI and the gravity modes.
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rendering it unstable. This mechanism for instability is the
same as for the MTI but with the mean molecular weight
playing the role of the temperature in the background
atmosphere. The mean molecular weight is initially constant
along the field line and it is unaffected by expansions or
contractions of the fluid parcel. The vertical displacement does
therefore not give rise to any anisotropic particle diffusion
along the field line and we conclude that the MTCI should be
largely unaffected by D 0.¹

The new features enabled by particle diffusion are illustrated
in Figure 5, which only differs from Figure 4 in that particles
are able to diffuse along magnetic field lines, i.e.,

k H 4.D
2

mfp dynw l w=  The first and leftmost panels of
Figures 4 and 5 are identical because the MTCI is mostly
unaffected by particle diffusion, as explained above. The
second panel shows the MTCI unstable band along k and the
diffusion modes along k .^ In the third panel, where the
magnetic field is inclined at 45 , there is a region of stability
between the two bands of unstable modes. This is in stark
contrast with the third panel of Figure 4 where the
corresponding region has significant growth rates. The fifth
and rightmost panel of Figure 5 can be roughly divided into
two unstable bands: an inner band with a growth rate of

0.7dyns w = and an outer band with a maximum growth rate
of 0.2.dyns w = The inner band has the same growth rate as
the gravity modes seen in the fifth panel of Figure 4 and the
second panel of Figure 2. The maximum growth rate of

0.8dyns w = is confined to a small area of wavenumber space.
Furthermore, we see that a large region of wavenumber space is
stable when particle diffusion is included. We conclude that the
instabilities have an even stronger tendency to prefer k k^  
when particle diffusion is included.

5.2.2. An Atmosphere with d d Pln ln 1m =

Next, we consider an atmosphere with d d Pln ln 1.m =
This atmosphere is only unstable when anisotropic diffusion of
particles is taken into account. Furthermore, the unstable modes
require that the magnetic field has a vertical component, i.e.,
b 0.z ¹ The growth rates of the diffusion modes are shown in
Figure 6. These diffusion modes have a preference for k k^  
but they have zero growth rate if k 0.= Interestingly, they
grow on a smaller length scale than the diffusion modes found
for d d Pln ln 0.m < This type of atmosphere (isothermal
with the mean molecular weight decreasing with height) is

relevant in the context of the boundary between the
intermediate and the outer ICM in the model of Peng & Nagai
(2009) that we discuss next.

6. APPLICATIONS TO SEDIMENTATION MODELS

Having gained some insight into the various instabilities that
can be triggered by the presence of a composition gradient in
an isothermal environment, we now address the stability
properties of more realistic scenarios, relevant to the conditions
expected in the ICM. In order to accomplish this, we consider
one of the models for Helium sedimentation introduced in Peng
& Nagai (2009). Before we present the analysis of the stability
of a cluster model in which Helium has sedimented efficiently,
we provide a brief summary of the assumptions and procedure
involved in deriving these models.

6.1. Spherically Symmetric Helium Sedimentation Models

In the He sedimentation model of Peng & Nagai (2009) the
plasma is assumed to be in hydrostatic equilibrium in the
gravitational potential that is mainly due to dark matter. The
composition is initially uniform with c 0.25= ( 0.59m = ) at all
radii as given by the primordial abundance of Helium. The
temperature of the cluster has a radial dependence that is
motivated by observations and it is fixed in time. This amounts
to assuming that heating and cooling are balanced at all radii.
This assumption is also made, for instance, in Shtykovskiy &
Gilfanov (2010). Furthermore, because the stellar mass content
of a cluster is smaller than the total Helium mass, enrichment
from galaxies can be ignored (Markevitch 2007).
Given this initial setup, the Burgers’ equations (Bur-

gers 1969; Thoul et al. 1994) are solved for each ion species
of the plasma assumed to consist of Hydrogen and Helium
ions, as well as electrons. The diffusion velocity of the Helium
ions is found by assuming that the gravitational force on the
Helium ions is balanced by the force due to electric fields, the
gradient in partial pressure and resistance due to collisions with
Hydrogen ions. The result is a slow gravitational settling of
Helium ions toward the core and the development of a non-
uniform composition profile. This change in the composition of
the gas takes the cluster out of hydrostatic equilibrium. This is
caused by the change in the pressure which depends on the
mean molecular weight, μ, see Equation (8). Burgers’
equations only describe the relative motion of the species and
so a momentum equation for the bulk flow of the gas needs to

Figure 6. Diffusion modes for d d Pln ln 1.m = This instability is driven by diffusion of He and is only unstable when D 0¹ and b 0.z ¹ The diffusion mode with
d d Pln ln 1m = operates on a smaller length scale than the diffusion mode with d d Pln ln 1.m = -
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be solved in order to describe the restoration of hydrostatic
equilibrium. The radial distribution of Hydrogen and Helium is
evolved by repeating these steps over cosmological timescales.

6.2. Evolving the Composition in Sedimentation Models

A brief summary of the calculations involved in the models
described in detail in Peng & Nagai (2009) can be outlined as
follows.

The total density distribution (gas + dark matter) of the
cluster is given by the Navarro–Frenk–White profile (Navarro
et al. 1997)

r
r r r r1

, 48s

s s
tot 2( )( ) ( )r

r
=

+

where sr is a normalization constant and rs is a characteristic
scale. The total mass, M r ,( ) enclosed within the radius, r, can
be found by integrating the density distribution. This yields

M r r r r
r r

r r
4 ln 1

1
, 49s s s

s

s

3 ( )( ) ( )⎡
⎣⎢

⎤
⎦⎥pr= + -

+

from which one can find the gravitational acceleration at a
distance r

g r
GM r

r
, 50

2
( ) ( ) ( )=

where G is the gravitational constant.
As per convention, r500 (r2500) is defined to be the radius

inside of which the mean density is 500 (2500) times the
critical density of the universe. The value of rs is chosen such
that r r0.25 .s 500= The model presented here has r 1.63500 =
Mpc, r 0.752500 = Mpc and a total cluster mass,
M r M1.24 10500

15( ) = ´  where M is the solar mass. The
ratio of the mass of the ICM to the total mass of the cluster is
assumed to be 0.15 at r500. The temperature profile is given by

T r

T

r r

r r r r

0.045 0.45
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1 0.6
, 51

s

s s0

1.9

1.9 2 0.45

( )
( ) ( )

( ) ( )⎡⎣ ⎤⎦
=

+
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where T 10 keV.0 = The parameters used in the model and the
functional dependence of T r( ) are motivated by a Chandra
sample of 13 nearby, relaxed galaxy clusters (Vikhlinin et al.
2006). The density, ρ, and pressure, P, of the gas is found by
solving the equation of hydrostatic equilibrium

dP

dr
g r , 52( ) ( )r= -

where the gravitational potential is given by Equation (50) and
the pressure is related to the density by Equation (8).

Burgers’ equations, namely, the continuity and momentum
equations for each species, s, are given by (Burgers 1969;
Thoul et al. 1994)

n

t r

r n u
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where ns is the number density, us is the velocity, and ws is the
velocity of species s relative to the bulk velocity of the fluid, u.
The mass and charge numbers of ion species s are given by As

and Zs. The electric field is given by E and the resistance
coefficients are given by

K f
e Z Z m

k T
n n

4 2

3
ln , 55st

s t st
s t stB

1
4 2 2 1 2

B
3 2( ) ( )p

= L-

where mst is the reduced mass and ln stL is the Coulomb
logarithm of species s and t, which we set to 40 (see more
details in Appendix B). The parameter fB

1- is the magnetic
suppression factor that regulates the slow down of the
sedimentation process envisioned to arise as a result of tangled
magnetic fields. The profiles shown in Figure 7 have been
obtained by setting f 1B = and thus ignore this effect.
Burgers’ equations are solved along with the momentum

equation for the bulk motion of the gas

du

dt

P

r
g r , 56( ) ( )r r= -

¶
¶

-

and the distribution of elements is found as a function of time.
We show the results from a calculation using this method in

Figure 7 which was produced by rerunning the code3

developed by Peng & Nagai (2009). In this figure, the mean
molecular weight profile for a 11 Gyr-old cluster is shown
along with the temperature profile used for the calculation. A
simple explanation of the peak in the mean molecular weight is
that the resistance coefficient depends strongly on temperature.
This means that He sedimentation will tend to be most effective
where the temperature is high. The dashed black line shows the
initial (primordial) composition of the plasma.
Efficient sedimentation in the ICM can lead to biases in the

estimates of key parameters of clusters if the sedimentation is
not taken into account in the data analysis. The specific model
described here would lead to biases of 6% in the total mass and
gas mass at r r2500= if a homogeneous plasma is assumed.
This would create a bias of 12% in the gas mass fraction of the
cluster and a bias of around 20% in the estimate for the Hubble
constant (see Figure 4 in Peng & Nagai 2009). In the next

Figure 7. Mean molecular weight profile (blue line) in a 11 Gyr-old galaxy
cluster and the temperature profile (red dashed line) used in the model of Peng
& Nagai (2009). The dashed black line indicates the primordial composition at
t = 0 Gyr which is 0.59.m =

3 The authors of Peng & Nagai (2009) kindly provided us with a copy of the
original Fortran code used for their paper.
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section we discuss how the composition profile inferred from
the model could be unstable at all radii due to plasma
instabilities.

6.3. Stability Analysis of Helium Sedimentation Models

The model presented in Peng & Nagai (2009) provides
estimates for the derivatives d T d Pln ln and d d Pln lnm
as a function of radius. This is illustrated in Figure 8, where we
have divided the ICM into three regions. The inner ICM which
extends from r r 0.01500 = to the radius where
d d Pln ln 0m = (r r 0.05500 = ) and the outer ICM which
extends from the radius where d T d Pln ln 0=
(r r 0.18500 = ) to the radius r r 1.500 = The intermediate
ICM is defined to be the region in between the previous two.

Before delving into details, we can provide a qualitative idea
about which parts of the ICM are prone to the different types of
instabilities. In order to do this, we consider the numerical
values of the gradients in temperature and composition in the
context of the stability diagrams introduced in Pessah &
Chakraborty (2013; see Figures 2 and 3 in their paper). The
comparison is facilitated by using a parametric plot in the
d d P d T d Pln ln , ln ln( )m plane, see Figure 9. The
colored sections in this figure indicate the regions of parameter
space which are subject to the different types of instabilities
discussed in Section 4. The extent of these regions is also
indicated with color bars at the bottom of Figure 8. The red
color bar indicates the region where the diffusive HPBI could
be active and the blue bar indicates the region where the
diffusive HPBI and the diffusion modes could be active.
Finally, the region highlighted by the green bar is unstable to
the MTCI and the conduction modes.4 These conclusions
require, of course, that the magnetic field geometry allows for
the various instabilities to be triggered.

The stability criteria derived in Pessah & Chakraborty (2013)
assume that magnetic tension is negligible. In order to assess
whether this effect could be important, we need a model for the
magnetic field strength in the ICM. We can estimate the plasma
β as a function of cluster radius, r ,( )b for the model of Peng &
Nagai (2009), by using

B r B
n r

n 0
, 570

e

e
( ) ( )

( ) ( )⎛
⎝⎜

⎞
⎠⎟=
h

where ne is the electron number density, B 4.70 = μG, and
0.5,h = as found for the Coma cluster in Bonafede et al.

(2010). The quantitative results therefore depend on this choice
while the qualitative results should not. Using this model, we
illustrate in Figure 10 the potential role that magnetic tension
could play, especially in the inner parts of the ICM. The
assumptions made in Pessah & Chakraborty (2013) are valid
within region 4 in Figure 10. The dispersion relation derived in
this paper extends the validity of the analysis to also include
regions 2 and 5 where magnetic tension is important. For the
sake of completeness, we recall that the fluid approximation
breaks down in region 1 and 3 and that the local approximation
in the linear analysis breaks down in region 6 and 7.
In what follows, we discuss the growth rates and the

characteristic distances on which the various instabilities could
operate in the cluster model of Peng & Nagai (2009) at
t = 11 Gyr. Using the radial profiles provided by the model, we
can calculate the values of the needed parameters
(d T d Pln ln , d d Pln ln ,m ,dynw H, ,mfpl Kn, ,c ,n D) as
a function of radius. In addition to the model of Peng & Nagai
(2009) we consider a magnetic field given by Equation (57) to
estimate β.

Figure 8. Gradients d T d Pln ln (red dashed line) and d d Pln lnm (blue
line) as a function of radius in the model of Peng & Nagai (2009) at t = 11 Gyr.
The ICM is divided into inner ICM, intermediate ICM and outer ICM. The
color bar illustrates which instabilities could be triggered, see Figure 9 for the
color coding. The labels A, B, and C indicate the radii used to produce
Figures 11–13.

Figure 9. Parametric plot in the d d P d T d Pln ln , ln ln( )m plane as a
function of r r500 (black line with arrow indicating the direction of increasing
radial distance). Red is unstable to the diffusive HPBI. Blue is unstable to the
diffusive HPBI and the diffusion modes. Green is unstable to the MTCI and the
conduction modes. Comparing this figure with the stability diagrams of Pessah
& Chakraborty (2013) leads to the color bars identifying the different regions in
Figure 8.

4 The conduction modes are important in the slow conduction limit,
,c dynw w see Pessah & Chakraborty (2013).
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In order to assess the influence of the sedimentation of
Helium on the stability properties of the ICM we solve the
dispersion relation for the sedimentation model of Peng &
Nagai (2009) at both t = 0 Gyr and t = 11 Gyr. We include
anisotropic heat conduction, Helium diffusion, Braginskii
viscosity and a finite β in the calculations in Sections 6.4–
6.6. The effect of Braginskii viscosity is to damp perturbations
with short perpendicular wavelengths. The effect of the
magnetic tension is to stabilize modes with short parallel
wavelengths and, in general, to inhibit the growth rates. The
role of magnetic tension in decreasing the maximum growth
rate is investigated in Section 7. In the following we consider
each of the three regions of the ICM defined in Figure 8
separately.

6.4. Outer ICM

In the model of Peng & Nagai (2009) at t = 11 Gyr, both the
temperature and the mean molecular weight decrease with
radial distance in the outer ICM, as illustrated in Figure 7. In
the inner part of the outer ICM we have
d d P d T d Pln ln ln ln ,m > see Figure 8, and this makes
this region unstable to diffusion driven modes and the diffusive
HPBI at short parallel wavelengths and to the diffusion modes
at long parallel wavelengths. In the outer part of the outer ICM
we have d d P d T d Pln ln ln lnm < which makes this
region unstable to the MTCI and to conduction modes at long
parallel wavelengths. The model at t = 0 Gyr, before Helium
has had time to sediment, is unstable to the MTI. We note that
these conclusions depend on the magnetic field geometry.

As an illustration, we consider a magnetic field inclined at
45q = ° at a specific radial distance, r r 0.5,500 = indicated

with a letter A on Figure 8. Using values evaluated at this
location (d T d Pln ln 0.16= and d d Pln ln 0.05m = at
t = 11 Gyr and d T d Pln ln 0.16= and d d Pln ln 0m =
at t = 0 Gyr) we calculate the growth rates, as shown in
Figure 11. In the panel on the left (right) we show the growth
rate as a function of wavenumber for the model at t = 0 Gyr
(t = 11 Gyr). We observe that the maximum growth rate is

0.87 Gyr 1s » - without Helium sedimentation (t = 0 Gyr) and
0.75 Gyr 1s » - with Helium sedimentation (t = 11 Gyr) such

that the instabilities grow unstable on a timescale of either
1.15 Gyr or 1.3 Gyr, respectively. The presence of Helium
sedimentation is concluded to lead to a decrease in the growth
rate by approximately 15%, in agreement with the rough
estimate in Pessah & Chakraborty (2013). Considering a
characteristic scale L k2 ,p= the fastest growing mode
corresponds to L L, 1.0, 1.0x z( ) ( )= Mpc at t = 0 Gyr. This
scale is slightly decreased to L L, 0.9, 0.8x z( ) ( )= Mpc at
t = 11 Gyr. The unstable modes found are describable by a
fluid approach (at this radial distance 30mfpl = kpc) but they
are not strictly describable by a local linear analysis (at this
radial distance H 0.35= Mpc). The value of dyn

1w- at this
distance is roughly 0.3 Gyr so the instability grows on a
timescale a factor of a few larger than the dynamical timescale.

6.5. Intermediate ICM

According to the model at t = 11 Gyr, the temperature
increases while the mean molecular weight decreases with
radial distance in the intermediate ICM. The stability diagrams
of Pessah & Chakraborty (2013) then reveal that the
intermediate ICM is unstable to the diffusive HPBI in the
entire region. Furthermore, the outer part of the intermediate
ICM is unstable to the diffusion modes.
For illustrative purposes, we consider the radial distance

indicated with a letter B on Figure 8 which is located at
r r 0.15.500 = At this location, d T d Pln ln 0.02= - and
d d Pln ln 0.1m = at t = 11 Gyr and so the diffusion modes
and the diffusive HPBI are expected to be active. In the absence
of sedimentation this radial distance is unstable to the HBI
(d T d Pln ln 0.03= - and d d Pln ln 0m = at t = 0 Gyr).
We consider the growth rates for the t= 0 Gyr cluster in the left
panel and the t = 11 Gyr in the right panel of Figure 12. In this
figure we have assumed 75q = °. The intermediate region is
stabilized by the gradient in composition at t = 11 Gyr if
anisotropic particle diffusion is neglected (D = 0) but when
anisotropic particle diffusion is taken into account (D 0¹ ) the
diffusive HPBI and diffusion modes could be active. This can
understood from the criteria for stability for the HPBI, the
diffusive HPBI and the diffusion modes, given by Equa-
tions (45)–(47), respectively. While Equation (45) is satisfied
Equations (46) and (47) are not. We conclude that even though

Figure 10. Validity of the local linear analysis as a function of radius. The
results of Pessah & Chakraborty (2013) are valid within region 4. The effects of
magnetic tension should be accounted for in regions 2 and 5. The fluid
approximation breaks down in region 1 and 3 and the local approximation
breaks down in region 6 and 7.

Figure 11. Contour plots of the growth rate in Gyr−1 for the outer ICM
(location C). This region is unstable to the MTI at t = 0 Gyr (left panel) or the
MTCI and the conduction modes at t = 11 Gyr (right panel). The most unstable
modes are found at intermediate parallel wavenumbers because magnetic
tension stabilizes modes with a high parallel wavenumber. The maximum
growth rate is decreased by 15% with respect to the homogeneous case.
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diffusion modes only grow on a diffusive timescale, ,D
1w- they

can be dominant if the instabilities that grow on a conduction
timescale, ,c

1w- are not active. The diffusive HPBI, however,
requires that ,D dynw w a requirement that is not fulfilled in
the unstable region in Figure 12. The diffusion modes are
active regardless of whether D dynw w or ,D dynw w and so
the growth rates present in Figure 12 are interpreted to be due
to the diffusion modes. The maximum growth rates are

0.28 Gyr 1s » - at t = 0 Gyr and 0.59 Gyr 1s » - at
t = 11 Gyr corresponding to timescales of 3.6 Gyr and
1.7 Gyr, respectively. The maximum growth rate is increased
by 110% with respect to the homogeneous case. The most
unstable scales are L L, 0.32, 0.35x z( ) ( )= Mpc at t = 0 Gyr
and L L, 0.15, 0.15x z( ) ( )= Mpc at t = 11 Gyr.

6.6. Inner ICM

In the inner ICM both the temperature and the mean
molecular weight increase with radial distance at t = 11 Gyr.
This implies that this region is only unstable with respect to the
diffusive HPBI at t = 11 Gyr. At t = 0 Gyr, it is unstable to the
HBI. The magnetic field strength increases toward the center of
the ICM and so we expect the magnetic tension to dampen the
growth rates more severely in the inner ICM.

We consider the radial distance indicated with a letter C on
Figure 8, which is located at r r 0.02.500 = At this radius,
d T d Pln ln 0.4,= - d d Pln ln 0.13m = - at t = 11 Gyr
and d T d Pln ln 0.51,= - d d Pln ln 0m = at t = 0 Gyr.
Due to the low value of Kn 2b » , we expect magnetic tension
to influence the dynamics as highlighted in Figure 13. We
assume that 90q = ° which is the maximally unstable
configuration. In Figure 13, the left panel shows the growth
rates at t = 0 Gyr and the right panel shows the growth rates at
t = 11 Gyr. Braginskii viscosity makes the HPBI have a
preference for k k ,^   as explained in Section 5. Magnetic
tension also acts to inhibit the growth of modes with a high
parallel wavenumber. Braginski viscosity and magnetic tension
are therefore the reasons for the zero growth rates at high
vertical wavenumbers, kz. The wavenumbers are not restricted
in the x-direction (perpendicular to gravity) and so the fastest
growth rates are attained for short distances in the x-direction
because heat conduction is effective on short distance scales.
The maximum growth rate is therefore found for L 25 kpcz »
and an even shorter length scale in the x-direction. The fluid
limit is, however, only valid as long as L 40x mfpl » pc at

this distance. The vertical length scale of the fastest growing
mode should be much smaller than H 50 kpc» but this is not
the case. The maximum growth rates are 5 Gyr 1s » - without
sedimentation and 7.2 Gyr 1s » - with sedimentation corre-
sponding to timescales for growth of 0.20 Gyr and 0.14 Gyr,
respectively. When sedimentation is present, we find that the
maximum growth rate is increased by 40% with respect to the
homogeneous case.

6.7. Magnetic Tension Decreases the Growth Rates

In order to assess how the effect of magnetic tension
modifies the growth rates we compare the solutions we obtain
when we set 0Aw = with those found when we set Aw equal to
the value found by combining the model of Peng & Nagai
(2009) at t = 11 Gyr with Equation (57). The maximum growth
rates as a function of radius for a field with 90q = ° and 0q = °
inclination with respect to the direction of gravity are shown in
Figure 14. The solid lines include 0Aw ¹ while the dashed
lines are found by solving the 0Aw = limit of the dispersion
relation. We conclude that magnetic tension decreases the

Figure 12. Contour plots of the growth rate in Gyr−1 for the intermediate ICM
(location B). This region is unstable to the HBI at t = 0 Gyr (left panel) or the
diffusion modes and the diffusive HPBI at t = 11 Gyr (right panel). This region
is only unstable at t = 11 Gyr if D 0.¹ The maximum growth rate is increased
with 110% with respect to the homogeneous case.

Figure 13. Contour plots of the growth rate in Gyr−1 for the inner ICM
(location A). This region is unstable to the HBI at t = 0 Gyr (left panel) and to
the diffusive HPBI at t = 11 Gyr (right panel). In both cases, the maximum
growth rate is significantly decreased and the most unstable modes are found at
longer parallel wavelengths because of magnetic tension. The maximum
growth rate is increased by 40% with respect to the homogeneous case.

Figure 14. Maximum growth rates as a function of radius in the cluster model
of Peng & Nagai (2009) at t = 11 Gyr in the limit where magnetic tension is
neglected (dashed lines) and when it is taken into account (solid lines).
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maximum growth rate at all radii but the effect is seen to be
most significant in the inner cluster region (Carilli &
Taylor 2002; Kunz 2011; Pessah & Chakraborty 2013).

7. DISCUSSION AND PROSPECTS

Understanding whether He sedimentation in galaxy clusters
is efficient or whether it can be hindered by tangled magnetic
fields, turbulence, or mergers remains an open question in
astrophysics. Addressing this problem from first principles
demands a better understanding of the processes involved in
the weakly collisional, magnetized plasma constituting the
ICM. As a first step in this endeavor, we have taken a simple
approach to gauge the importance of various dynamical
instabilities, related to the MTI and HBI, that can feed off
temperature and composition gradients (Pessah & Chakra-
borty 2013) as expected from state-of-the-art sedimentation
models (Peng & Nagai 2009).

We have shown that if a gradient in the composition of the
ICM arises due to Helium sedimentation, as modeled for
example in Peng & Nagai (2009), this might not be a stable
equilibrium. We illustrated this by showing that, depending on
the magnetic field orientation, the radial profile of the
sedimentation model is unstable, to different kinds of
instabilities, at all radii. The instabilities are shown to grow
on timescales that are short compared to the life-time of a
typical cluster. Our findings are summarized in Figure 15
where we show the maximum growth rate as a function of
radius for both the homogeneous cluster model (t = 0 Gyr) and
the cluster model with a gradient in composition (t = 11 Gyr)
for a magnetic field that is either parallel or perpendicular to the
direction of gravity. In this figure we find that, in accordance
with Pessah & Chakraborty (2013), Helium sedimentation can
lead to an increase in the maximum growth rate in the inner
cluster region but a decrease in the maximum growth rate in the
outer cluster region. The figure illustrates that the composition
gradients, as inferred from sedimentation models which do not
fully account for the weakly collisional character of the

environment, are not necessarily robust even though the
entropy increases with radius. This contrasts the arguments
regarding the stability of composition gradients put forth in
Markevitch (2007), which predates the discovery of the HBI
(Quataert 2008).
The instabilities discussed in this paper could provide an

efficient mechanism for diminishing the mean molecular
weight gradient in the ICM by turbulently mixing the Helium
content. Whether this is the case depends on how the
instabilities saturate as well as the large scale dynamical
processes that contribute to determining the global gradient in
the mean molecular weight. There are several processes that
could play a role in this regard at both small and large scales.
Understanding their influence will lead to a more realistic
picture of the ICM dynamics. We mention a few examples
below.
The equations of kinetic MHD used in this paper do not

incorporate the physics responsible for the composition
gradients found in sedimentation models based on Burgerʼs
equations. They are therefore not able to self-consistently
describe the coupling of magnetic fields to the sedimentation
process. One possible route forward would be to extend the
equations of kinetic MHD and take the sedimentation process
into account by following Bahcall & Loeb (1990). This would
allow us to describe the dynamical influence of the magnetic
field at the cost of using a one-fluid model instead of the
commonly used multifluid models. Even though an extension
of the kinetic MHD framework would describe unmagnetized
sedimentation less precisely than Burgers’ equations (Thoul
et al. 1994), this would be a step forward in our understanding
of sedimentation processes in the ICM.
Our idealized model of the ICM consisted of a weakly

collisional, plane-parallel atmosphere in hydrostatic equili-
brium. Real clusters are most likely not in perfect hydrostatic
equilibrium as the ICM can be stirred by mergers and accretion.
The ensuing turbulence can contribute with a significant
fraction of the pressure support needed to counteract gravity
(Lau et al. 2009; Nelson et al. 2014). The instabilities we have
described could be influenced by such turbulence, as well as by
the cosmological expansion over timescales comparable to the
age of the universe (Ruszkowski et al. 2011).
Another issue raised in this paper is that some of the fastest

growing modes grow on scales that are not strictly local in
height. This means that there is a need for a quasi-global theory
as developed in Latter & Kunz (2012) in order to correctly
describe the linear dynamics of the weakly collisional medium.
Other issues may affect the plasma dynamics at small scales.
Very fast microscale instabilities, such as the firehose and
mirror instabilities, could play a key role in the ICM
(Schekochihin & Cowley 2006; Schekochihin et al. 2010;
Kunz et al. 2011). These instabilities are not correctly described
in the framework of kinetic MHD (Schekochihin et al. 2005).
This might not be a problem if the microinstabilities saturate in
such a way that they drive the pressure anisotropy to marginal
stability (Schekochihin et al. 2008; Rosin et al. 2011). This is
still an outstanding issue in the study of homogeneous plasmas.
The microinstabilities are not a concern for the linear evolution
of the MTI and the HBI but they are important for simulations
of their nonlinear evolution (Kunz et al. 2012). We anticipate
the need to deal with similar issues for simulations of the
nonlinear evolution of the instabilities that are driven by
gradients in composition.

Figure 15.Maximum growth rate as a function of radius in the cluster model of
Peng & Nagai (2009) at t = 0 (dashed) and t = 11 Gyr (solid) for a field with

90q = ° (red) and 0q = ° (blue) inclination with respect to the direction of
gravity. The effects of a finite β are included. The sedimentation increases
(decreases) the theoretically predicted growth rates in the inner (outer) cluster.
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APPENDIX A
CHARACTERISTIC TIMESCALES FOR

SEDIMENTATION AND ANISOTROPIC TRANSPORT

A.1. Helium Sedimentation

In this paper we have built on the stability analysis of Pessah
& Chakraborty (2013) and applied these tools to the Helium
profile provided by the sedimentation model of Peng & Nagai

(2009) in order to calculate the growth rates of instabilities that
could be present in this model of the ICM. In our calculations
we have assumed that the composition profiles evolve on
timescales that are longer than the characteristic timescales in
which the instabilities operate. Within this framework, we
found that the relevant instabilities grow on timescales
comparable to the dynamical timescale. We show here that
our approach is justified because the timescales involved in the
sedimentation process are much longer than the dynamical
timescale. In order to estimate the timescale for sedimentation,
we use an approximation for the sedimentation velocity, w ,He

given by
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in Peng & Nagai (2009) for a single Helium ion immersed in a
Hydrogen background. Here, nH is the Hydrogen number
density. The separation of timescales is illustrated in Figure 16
where we show the time for a He ion to sediment a distance of
one scale height (t H wsedi He= ) along with the dynamical
timescale (t H vsound th dyn

1w= = - ) as a function of radius in the
cluster. We observe that the timescales differ by more than an
order of magnitude, providing support to our assumption.

Figure 16. Left: The timescale for sedimentation across a scale height (red dashed) and the timescale for sound to cross a scale height (blue) as a function of radius in
the model of Peng & Nagai (2009). Right: The dimensionless values of cw (blue) and Dw (red dashed) are shown as a function of radius. The approximations given in
Equations (35) and (37) are indicated with solid horizontal lines.

Figure 17. The values of c (left), n (middle), and D (right) as function of radius in the cluster model of Peng & Nagai (2009) at t = 11 Gyr.
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A.2. Heat Conduction, Braginskii Viscosity,
and Particle Diffusion

In order to estimate the timescale for particle diffusion we
use Equations (64)–(66) to estimate the coefficients ,c n and
D. We calculate the dimensionless values of ,cw vw , and Dw by
scaling them with k H2

mfp dynl w where the frequencies ,cw vw ,
and Dw are defined in Equation (24). The dimensionless values
of cw and Dw are shown as a function of radius (using the model
of Peng & Nagai 2009) in the right panel of Figure 16. From
this figure we estimate that the diffusion timescale is roughly
40 times longer than the timescale for heat conduction,
enabling us to estimate Dw as in Equation (37). The
dimensionless value of vw does not depend on any physical
parameters and is therefore 3/2 at all radii.

APPENDIX B
TRANSPORT PROPERTIES OF A
HYDROGEN-HELIUM PLASMA

The procedure used to derive the kinetic MHD equations for
a binary mixture is similar to the procedure used for a pure
Hydrogen plasma (Braginskii 1965; Kulsrud 1983).

The non-ideal transport coefficients for a plasma consisting
of Hydrogen and Helium ions as well as electrons are found by
using the Krook operator in the Vlasov–Landau–Maxwell
equations
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Here, fs is the one-particle phase-space distribution of species s
and qs (ms) is the particle charge (mass). The Krook operator is
given by (Snyder et al. 1997)
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t
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where the sum extends over all species and the equilibrium
function, FMst, is given by
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Here, the collision frequency between species s and t is given
by
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where ln stL is the Coulomb logarithm and
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( )=

+

is the reduced mass. Furthermore, the mean velocity in the
parallel direction of species s is u s, and we assume that all
species have the same temperature, T T .s =

Following Peng & Nagai (2009) and Shtykovskiy &
Gilfanov (2010), we use ln 40stL = which is a characteristic
value for the ICM. One can derive the kinetic MHD equations,
given by Equations (1)–(4), by assuming that the distribution
function is gyrotropic and calculating moments in velocity
space of the Landau-Vlasov equation (Kulsrud 1983). If it is

assumed that the distribution function is Gaussian when
calculating the moments v ,4

 v ,4
^ and v v ,2 2

^ the equations are
closed and one can show that (see, for instance, A. A.
Schekochihin & M. W. Kunz, in preparation)
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for the heat conductivity, and
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for the Braginskii viscosity. In these expressions the heat
conduction due to ions and the viscosity due to electrons is
neglected. This approximation is good because
m m m,H He e .

The anisotropic diffusion coefficient due to a gradient in the
composition was approximated by Bahcall & Loeb (1990). In
terms of the ratio of the Helium density to the total gas density,
c, it can be expressed as Pessah & Chakraborty (2013)

D
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Using the model of Peng & Nagai (2009), we show the
transport coefficients as a function of radius in Figure 17.
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ABSTRACT

The distribution of helium in the intracluster medium (ICM) permeating galaxy clusters is not well constrained due
to the very high plasma temperature. Therefore, the plasma is often assumed to be homogeneous. A nonuniform
helium distribution can, however, lead to biases when measuring key cluster parameters. This has motivated one-
dimensional models that evolve the ICM composition assuming that the effects of magnetic fields can be
parameterized or ignored. Such models for nonisothermal clusters show that helium can sediment in the cluster
core, leading to a peak in concentration offset from the cluster center. The resulting profiles have recently been
shown to be linearly unstable when the weakly collisional character of the magnetized plasma is considered. In this
paper, we present a modified version of the MHD code Athena, which makes it possible to evolve a weakly
collisional plasma subject to a gravitational field and stratified in both temperature and composition. We
thoroughly test our implementation and confirm excellent agreement against several analytical results. In order to
isolate the effects of composition, in this initial study we focus our attention on isothermal plasmas. We show that
plasma instabilities, feeding off gradients in composition, can induce turbulent mixing and saturate by rearranging
magnetic field lines and alleviating the composition gradient. Composition profiles that increase with radius lead to
instabilities that saturate by driving the average magnetic field inclination to roughly 45°. We speculate that this
effect may alleviate the core insulation observed in homogeneous settings, with potential consequences for the
associated cooling flow problem.

Key words: diffusion – galaxies: clusters: intracluster medium – instabilities – magnetohydrodynamics (MHD)

Supporting material: animations

1. INTRODUCTION

Atmospheres composed of a plasma that is weakly
collisional and weakly magnetized have stability properties
that differ qualitatively from collisional atmospheres. Instabil-
ities such as the magnetothermal instability (MTI; Bal-
bus 2000, 2001) and the heat-flux-driven buoyancy instability
(HBI; Quataert 2008) can arise when there is a gradient in the
temperature either parallel or anti-parallel to the gravitational
field. These instabilities, which feed off a gradient in
temperature, have been extensively studied (Balbus 2000, 2001;
Parrish & Stone 2005, 2007; Parrish & Quataert 2008; Parrish
et al. 2008, 2009, 2010, 2012a, 2012b; Quataert 2008;
Bogdanović et al. 2009; Ruszkowski & Oh 2010; Kunz
2011; McCourt et al. 2011, 2012; Kunz et al. 2012; Latter &
Kunz 2012), and they are believed to be important for the
understanding of the dynamical evolution of the intracluster
medium (ICM) of galaxy clusters.

These studies assumed that the composition of the plasma is
uniform, an assumption that might not be appropriate if heavier
elements are able to sediment toward the core of the cluster
(Fabian & Pringle 1977). In parallel and complementary
studies, the long-term evolution of the radial distribution of
elements has been studied using one-dimensional models
(Fabian & Pringle 1977; Gilfanov & Syunyaev 1984; Chuzhoy
& Nusser 2003; Chuzhoy & Loeb 2004; Peng & Nagai 2009;
Shtykovskiy & Gilfanov 2010). The ensuing nonuniform
composition has been argued to introduce biases in cluster
properties as inferred from observations (Markevitch 2007;
Peng & Nagai 2009).

While the studies of the MTI and HBI assumed a uniform
plasma, the sedimentation models have yet to include magnetic
fields. In an attempt to bridge the gap between the different

approaches, and with the goal of understanding the long-term
evolution of the composition of the ICM, Pessah &
Chakraborty (2013) studied the stability properties of weakly
collisional atmospheres with gradients in both temperature and
composition. They found that gradients in composition, either
parallel or anti-parallel to the gravitational field, can trigger
instabilities. In a subsequent study, Berlok & Pessah (2015)
carried out a comprehensive study using linear mode analysis
and showed that these instabilities are expected to render the
composition profiles obtained with current sedimentation
models unstable, as it was illustrated using the model of Peng
& Nagai (2009).
In this paper, we present the first nonlinear, two-dimensional

(2D), numerical simulations of the instabilities that feed off a
gradient in composition using a modified version of the MHD
code Athena (Stone et al. 2008). The instabilities considered
are (i) the magneto-thermo-compositional instability (MTCI),
which is maximally unstable when the magnetic field is
perpendicular to gravity; (ii) the heat- and particle-flux-driven
buoyancy instability (HPBI), which is maximally unstable
when the magnetic field is parallel to gravity; and (iii) the
diffusion modes, which are maximally unstable when the
magnetic field is parallel to gravity. These instabilities arise due
to the weakly collisional nature of the ICM, which fundamen-
tally changes the transport properties of a plasma. In this
regime, where the gyro-radii of the particles are much smaller
than the mean free path for particle collisions, the transport of
heat, momentum, and particles will be primarily along the
magnetic field lines.
The MTCI and HPBI will be present in isothermal

atmospheres in which the composition increases with height,
while diffusion modes can be present regardless of the direction
of the gradient in composition (Pessah & Chakraborty 2013).
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The linear dispersion relation presented in Berlok & Pessah
(2015) is used to compare with the linear evolution of the
simulations. We find good agreement, thereby confirming both
the linear theory and our numerical method. For the nonlinear
evolution of the instabilities we find that the magnetic field
inclination goes to roughly 45° independently of whether the
magnetic field is initially horizontal (MTCI) or vertical (HPBI).
This is contrary to the instabilities driven by temperature
gradients, where the average magnetic field becomes almost
vertical (horizontal) for an initially horizontal (vertical)
magnetic field (Parrish & Stone 2005; Parrish & Quataert
2008). The simple explanation is that the MTCI and HPBI,
both of which grow when the composition increases with
height, can operate simultaneously. They are therefore driving
the average angle in opposite directions, compromising at
roughly 45°. The MTI and HBI, being dependent on
temperature gradients in opposite directions, cannot grow at
the same time, and so they grow unabated by their counterpart.
We also find that both types of instabilities cause turbulent
mixing of the helium concentration. We conclude that, in the
idealized numerical settings that we employ, instabilities driven
by the free energy supplied by a gradient in composition
saturate by alleviating the gradient and thereby removing the
source of free energy.

The rest of the paper is organized as follows: we start out by
introducing the equations of kinetic MHD in Section 2 and how
they can be solved numerically in Section 3. In Section 4 we
demonstrate that the simulations agree with the linear theory
for isothermal atmospheres, and we illustrate how the growth
rates depend on some of the key parameters of the problem. We
also use atmospheres with gradients in both temperature and
composition, motivated by the model of Peng & Nagai (2009)
and discussed in Berlok & Pessah (2015), to show that the
theory and simulations also agree with both gradients present.
In Section 5, we consider the nonlinear evolution of the MTCI
and HPBI in isothermal atmospheres in order to determine how
they saturate. We summarize and outline future work in
Section 6.

2. KINETIC MHD FOR A BINARY MIXTURE

We consider a fully ionized, weakly magnetized, and weakly
collisional plasma consisting of a mixture of hydrogen and
helium. We model such a plasma using the set of equations
introduced in Pessah & Chakraborty (2013),1
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In these equations ρ is the mass density, v is the fluid velocity,
B is the magnetic field with direction
ˆ ( ) ( )= = -b gb b g, 0, , 0, 0,x z is the gravitational accelera-
tion, and I is the identity matrix. The total pressure is

p= +P P B 8T
2 , where P is the thermal pressure and the

total energy density, E, is
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where g = 5 3 is the adiabatic index.
The composition of the plasma, c, is defined to be the ratio of

the helium density to the total gas density
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and the associated mean molecular weight, μ, is given by
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for a completely ionized plasma consisting of helium and
hydrogen. The mean molecular weight can modify the
dynamics of the plasma through the equation of state
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where kB is Boltzmann’s constant, T is the temperature, and mH

is the proton mass.
We consider the plasma to be influenced by three different

nonideal effects: Braginskii viscosity, which arises due to
differences in pressure parallel ( p ) and perpendicular ( p̂ ) to
the magnetic field, described by the viscosity tensor (Brag-
inskii 1965)
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anisotropic heat conduction described by the heat flux
(Spitzer 1962; Braginskii 1965),

ˆ ˆ · ( )c= - Q bb T , 11s

and anisotropic diffusion of composition described by the
composition flux (Bahcall & Loeb 1990),

ˆ ˆ · ( )= - Q bbD c. 12c

The transport coefficients for Braginskii viscosity ( n ), heat
conductivity ( c ), and diffusion of composition (D) depend on
the temperature, density, and composition of the plasma. The
dependences are given by Equations (64)–(66) in Berlok &
Pessah (2015). Finally, we define the thermal velocity,

r=v Pth , and the plasma-β given by

b p= =P B v v8 2 ,2
th
2

A
2 where pr=v B 4A is the Alfvén

velocity.2

3. NUMERICAL METHOD AND INITIAL CONDITIONS

The equations of kinetic MHD, Equations (1)–(5), are solved
using a modified version of the conservative MHD code
Athena (Stone et al. 2008). The algorithms used in Athena are

1 For further details on the kinetic MHD approximation and its limitations see
the relevant discussions in Kunz et al. (2012), Schekochihin et al. (2005),
Pessah & Chakraborty (2013), and references therein.

2 Note that this definition of β differs from the one in Berlok & Pessah (2015)
by a factor of 2.

2
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described in Gardiner & Stone (2005) and Stone & Gardiner
(2009), and a description of the implementation of anisotropic
thermal conduction and Braginskii viscosity can be found in
Parrish & Stone (2005) and Parrish et al. (2012b), respectively.

In order to carry out the numerical simulations of interest, we
have modified Athena to include a spatially varying mean
molecular weight, μ. This is done by using the inbuilt method
for adding a passive scalar, defined by a spatially varying
concentration, c, and then making it active by using the value
of c when calculating the temperature used in the heat
conduction module. Furthermore, we implemented a module
that takes account of diffusion of helium by using operator
splitting. This module has been built by following the same
approach employed in the heat conduction module that is
already present in the current publicly available version of
Athena (Parrish & Stone 2005; Sharma & Hammett 2007). Our
implementation allows for nonconstant values of the para-
meters  n c, , and D through user-defined functions. This
feature is, however, not used in this work, as we employ a local
approximation and thus treat these parameters as constants. The
diffusion terms are solved explicitly, which can make the time-
step constraint on viscosity, thermal conduction, and diffusion
of helium very restrictive. In order to circumvent this, we use
subcycling, which we limit to a maximum of 10 steps per MHD
step (Kunz et al. 2012).

3.1. Plane-parallel Atmosphere with Gradients in Temperature
and Composition

In this section, we introduce the two different atmospheres
used as initial conditions in the simulations. The atmospheres
considered are plane-parallel, i.e., all quantities are constant
along a horizontal slice, perpendicular to gravity. The
atmosphere is assumed to be composed of an ideal gas,
characterized by the equation of state given by Equation (9),
and is assumed to be in hydrostatic equilibrium, i.e.,3
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3.1.1. Isothermal Atmosphere with a Composition Gradient in the
Absence of Particle Diffusion

The simplest atmosphere we use is inspired by the original
numerical work on the MTI (Parrish & Stone 2005). We
consider an isothermal atmosphere with =T T0 and
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where P T,0 0, and m0 are the values of the pressure, temperature,
and mean molecular weight at z = 0, respectively, and H0 is the
scale height
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The density can be determined using Equation (9).

This isothermal atmosphere is used for simulations of the
linear regime of the MTCI in Section 4.1 and the linear regime
of the HPBI in Section 4.2. It is also used for simulations of the
nonlinear regime of the MTCI and HPBI in Section 5. The
magnetic field can have any orientation as long as D = 0. The
structure of this atmosphere is, however, not in equilibrium if

¹D 0 and ¹b 0z . In that case, we will have to use a more
sophisticated atmosphere, which we introduce next.

3.1.2. Atmosphere with Thermal and Composition Gradients

Steady state requires that the divergence of the heat and
particle fluxes vanish, i.e.,

· ( ) =Q 0, 17s

· ( ) =Q 0. 18c

Both conditions are trivially satisfied if bz= 0 and D = 0. If,
however, ¹b 0z and ¹D 0, these requirements can still be
met by simple atmospheric models if c and D do not depend
on z. Such an assumption is reasonable for the local simulations
that we will consider, where the height of the box, Lz, satisfies
the criterion L Hz 0. When there is both a gradient in
temperature T and mean molecular weight μ, the requirements
that · =Q 0s and · =Q 0c can be integrated to yield

( ) ( )= +T z T s z, 190 T

( ) ( )= +c z c s z, 200 c

where ( )= -s T T LT Z 0 Z and ( )= -s c c Lzc Z 0 are the
constant slopes in temperature and composition. Here T0 (TZ)
is the temperature at the bottom (top) of the box and c0 (cZ) is
the helium mass concentration at the bottom (top) of the box.
The pressure is found by solving Equation (13), leading to
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where ( )m z is related to c(z) by Equation (8) and the constant α
is given by
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H s T s

4

4 5
. 220

0 T 0 0 c

This solution for the pressure profile of the atmosphere is
replaced with a simple exponential atmosphere,

( ) ( )= -P z P z Hexp0 0 , with scale height H0 if = =s s 0T c .
We use this model atmosphere to perform simulations of

modes driven by diffusion in Section 4.3. These modes are
unstable when there is a vertical gradient in composition, a
nonzero vertical component of the magnetic field, ¹b 0z , and
anisotropic diffusion of helium, D ¹ 0. We also use this
atmosphere in Section 4.4 for simulations of the linear regime
of the MTCI and the HBPI with gradients in both temperature
and composition.

3.2. Boundary Conditions

Periodic boundary conditions are used in the horizontal
direction in all simulations. In the vertical direction we have
implemented two different sets of boundary conditions: (i) the
conventional reflective boundary conditions and (ii) a set of
boundary conditions that we will call quasi-periodic boundary
conditions. Both sets of boundary conditions are explained in
detail in Appendix B. Here we give a brief account of the

3 We consider high-β plasmas and do not include the magnetic pressure in the
derivations of the equilibria.
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motivation for using these two sets of boundary conditions and
their key differences.

The quasi-periodic boundary conditions are periodic in the
relative changes in the physical quantities. We have found that
these boundary conditions are a necessity in order for the
simulations to reproduce the growth rates predicted by the local
linear mode analysis. We believe that this is due to the
assumption of periodicity in the perturbed quantities that is
made when the dispersion relation is derived. This problem has
also been encountered in previous studies of the MTI (Rasera
& Chandran 2008). These boundary conditions are used in all
simulations presented in Section 4.

The reflective boundary conditions maintain hydrostatic
equilibrium by extrapolating pressure and density into the ghost
zones at the top and bottom of the computational domain. The
values of temperature and composition are held fixed at their
initial values in the ghost zones. The velocity z-component is
reflected symmetrically around the boundaries. If the magnetic

field is initially vertical (horizontal), it is forced to remain
vertical (horizontal) at the boundaries. These boundary
conditions are used in the simulations presented in Section 5.

4. SIMULATIONS OF THE LINEAR REGIME

The equations are made dimensionless by scaling the density
with r0, distances with H0, and velocities with the thermal
velocity vth,0. The magnetic field strength B0 is found from the
dimensionless parameter b0. Here the subscript “0” denotes the
value at the bottom of the computational domain, z = 0. With
this convention, the unit of time is H v0 th,0, temperature is
scaled with mT ,0 is scaled with m0, pressure, as well as energy
density, is scaled with r=P v0 0 th,0

2 , and the value of g is unity.
As a consequence, the coefficient for anisotropic heat
conduction, c , is scaled with r v H T0 th,0

3
0 0, and the coefficients

for Braginskii viscosity n, , and anisotropic diffusion of
composition, D, are both scaled with v Hth,0 0.
We begin by comparing the simulations with the linear

theory. In order to do so, we use the quasi-periodic boundary
conditions described in the previous section and in
Appendix B. A Cartesian box of size [ ] [ ]´L L0, 0,x z with

= =L L 0.1x z and a resolution of 64 × 64 is used in all

Table 1
Simulations of the Linear Regime Using Quasi-periodic Boundary Conditions

Simulation (n n,x z) θ b0 c n D Resolution Figure

MTCI_chi (1, 0) 0° 2 × 108 L 0 0 64 × 64 3(a)
MTCI_B ( )1, 0 0° L 3 × 10−4 0 0 64 × 64 3(b)
HPBI_nu ( )1, 1 90° 2 × 108 10−4 L 0 64 × 64 4(a)
HPBI_n (L, L) 90° 2 × 106 10−4 0 0 256 × 256 4(b)
D-mode_D ( )1, 1 90° 2 × 108 10−3 0 L 256 × 256 5(a)
D-mode_nu ( )1, 1 90° 2 × 108 10−3 L 10−3 64 × 64 5(b)
MTCI_ICMa (L, 0) 0° 2 × 106 ´ -1.4 10 2 ´ -4.0 10 4 0 256 × 32 6(a)
HPBI_ICMa (L, L) 90° 2 × 106 ´ -2.7 10 4 ´ -4.5 10 6 0 256 × 256 6(b)

Note. Each row represents a series of simulations, where the ellipses denote that the associated parameter is being varied.
a Using gradients in both temperature and composition.

Figure 1. Four of the components of the perturbation at =z L 2z for a mode
with p=k L2x x at time t = 5 in a simulation with resolution 32 × 32. The
simulation (green crosses) matches the theory (blue lines). The magnetic field is
p 2 out of phase with the velocity perturbation, as expected for a purely
growing mode.

Figure 2. Evolution of box-averaged quantities. The perturbed quantities grow
exponentially with a growth rate s = 0.40.
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simulations unless otherwise noted. An overview of the
simulations of the linear regime can be found in Table 1.

The instabilities are excited by seeding a given mode, with
components (d d d d dr r d dm mv v B B T T, , , , , ,x z x z ), as derived
by solving the eigenvalue system associated with the dispersion
relation introduced in Pessah & Chakraborty (2013) and Berlok
& Pessah (2015). We set the overall mode amplitude by
enforcing dr r = -10 4, so that the velocity perturbation is
subsonic (Parrish & Stone 2005). The amplitudes of the other
components are fixed by the solution to the linear eigenvalue
problem, which predicts that unstable modes grow exponen-
tially as ( )stexp while the ratio of their components remains
constant in time.

We begin by considering D = 0 and the hydrostatic
atmosphere given in Section 3.1.1, which has

m = -d d Pln ln 1 3 and =d T d Pln ln 0. This atmosphere
is unstable regardless of whether the magnetic field is oriented
horizontally (MTCI) or vertically (HPBI), as described in
Berlok & Pessah (2015).

4.1. The Magneto-thermo-compositional Instability

When the magnetic field is perpendicular to gravity, the
general dispersion relation, Equation (13) in Berlok & Pessah
(2015), reduces to

( ) ( )s
m

» -
+

g
d T

dz

k k

k

ln
, 23

x y2
2 2

2

in the limit of fast heat conduction and weak magnetic field.
When m increases with height and the atmosphere is
isothermal, we have s > 0. This is the instability known as
the MTCI (Pessah & Chakraborty 2013). In order to excite a
single MTCI mode, we use a perturbation of the form4 =k 0z

and p=k L2x x. We are interested in a direct visual
comparison of the spatial dependence of the perturbations in
the simulations and the one expected from the linear theory. In
order to illustrate this, we consider a setting with

c = ´ -3 10 4 and b = ´2 100
8. In Figure 1, we show the

values of the perturbations (green crosses) d d dm mv B B, ,z z ,
and dT T as a function of the x-coordinate. The data slices are
drawn at a fixed height, =z L 2z at the time t = 5 in

dimensionless units. The numerical results show good agree-
ment with the analytical results shown with blue solid lines.
In order to calculate the growth rate of the mode, we perform

an exponential fit to the time evolution of the box average of
the absolute value of any of the perturbed quantities, which are
shown in Figure 2. As expected from the local linear mode
analysis, the amplitudes of the various components of the
perturbation grow exponentially at the same rate.
The growth rate of the MTCI depends on, among other

things, the value of the heat conductivity, c , and the initial
magnetic field strength, B0. In order to illustrate this
dependence, and at the same time test our modification to the
code, we perform a parameter study. In the left panel of
Figure 3, we show how the growth rate increases with the value
of the heat conductivity, c . This is to be expected because the
MTCI is driven by heat transfer along magnetic field lines. In
the right panel of Figure 3, we show how the growth rate
decreases with the value of b-

0
1. The explanation for this

behavior is that magnetic tension tends to stabilize the MTCI
(Berlok & Pessah 2015). Magnetic tension has stabilizing
effects in the limit w wA dyn, where w = k vA A and
w = g Hdyn 0 . In dimensionless units, this requirement can
be written as  bk2 2 . From this estimate, the growth rates
shown in the right panel of Figure 3 should be negligible when

b- -100
1 4. The simulations and the solution to the dispersion

relation show that the growth rates are already inhibited by
magnetic tension at lower values of b-

0
1. These examples were

generated by running 10 simulations at a modest resolution
(64× 64). At this resolution the growth rates match to within a
percent of the values expected from linear theory.

4.2. The Heat- and Particle-flux-driven Buoyancy Instability

When the magnetic field is parallel to gravity, the general
dispersion relation reduces to

( ) ( )s
m

»
+

g
d T

dz

k k

k

ln
, 24

x y2
2 2

2

in the limit of fast heat conduction and weak magnetic field.
The isothermal atmosphere where μ increases with height,
which we considered in the previous section, is therefore also
unstable when the magnetic field is vertical. In this case, the
instability has been termed the HPBI (Pessah & Chakra-
borty 2013).

Figure 3. Growth rates for the MTCI. Left: the growth rate increases with the
value of c . Right: the growth rate decreases with increasing initial magnetic
field strength. The solid blue lines represent the theoretical values evaluated at
=z L 2z . The green crosses are growth rates obtained from the simulations.

Figure 4. Growth rates for the local HPBI. Left: the growth rate decreases with
the value of n . Right: the growth rate as a function of the mode number,
= =n n nx z. The solid blue lines represent the theoretical values evaluated at
=z L 2z . The green crosses are growth rates obtained from the simulations.

4 We note that ky = 0 in all the simulations presented in this paper.
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In this example, we include Braginskii viscosity, which
inhibits the growth rate by damping perturbations perpend-
icular to the magnetic field. Braginskii viscosity can be
important for the HPBI (Berlok & Pessah 2015). The
mechanism is similar to the mechanism described by Kunz
(2011) for the HBI. In order to excite a single mode of the
HPBI, we use a perturbation with wavenumbers p=k n L2x x x
and p=k n L2z z z, where = =n n nx z is the mode number.
We show the growth rate as a function of the Braginskii
viscosity coefficient, n in the left panel of Figure 4. These
simulations used a fixed value of c = =- n10 , 14 , and a
numerical resolution of 64 × 64. As expected, the growth rate
indeed decreases with increasing value of viscosity n .

The second dependence we study for the HPBI is the one on
the mode number, n. High wavenumbers require higher
numerical resolution in order to be resolved, and we use a
resolution of 256 × 256 for these simulations. For the sake of
simplicity, Braginskii viscosity is not included in these
simulations. The result is shown in the right panel of Figure 4.
The growth rate increases for increasing wavenumber because
small wavelength perturbations have a shorter timescale for
heat conduction. When the wavelength is too short, magnetic
field tension renders the modes stable. A naive estimate, using

 bk2 2 , suggests that this should happen when n 16, but
the exact solution to the dispersion relation shows that the
instability is quenched already when n = 7. Using such
simulations, we can directly see the cutoff in unstable
wavenumbers resulting from magnetic field tension (as in this
case) or viscosity (not shown here).

4.3. Modes Driven by Diffusion

One of the interesting findings of Pessah & Chakraborty
(2013) is that there are instabilities that are driven by particle
diffusion. This means that even though the equilibrium is stable
according to Equation (24), the fact that ¹D 0 makes the
equilibrium unstable. In order to study these unstable modes,
we assume, for simplicity, an isothermal atmosphere with an
initially vertical magnetic field.

In this case, as explained in Section 3.1, an equilibrium
configuration needs to fulfill · =Q 0c , and so we consider
the atmosphere given in Section 3.1.2 as an initial condition.
According to Equation (24), this configuration is unstable to the
HPBI for an isothermal atmosphere when the helium
concentration increases vertically. If instead the helium

concentration decreases with height, the atmosphere is stable
in the absence of anisotropic particle diffusion. Choosing the
slope in composition to be = -s 0.01c , we do not observe any
instabilities in the simulation when D = 0. The situation
changes dramatically, turning unstable when ¹D 0. The
growth rates found in such simulations are compared with
the predictions from the linear theory in Figure 5. Since the
modes are driven by diffusion of helium, we expect the growth
rate to increase with the value of D (left panel). The modes
have a damped growth rate when Braginskii viscosity is
included. We observe a decrease in the growth rate with
increasing n , in agreement with the solution to the dispersion
relation (right panel).

4.4. Gradients in Temperature and Composition

Having tested the case of isothermal atmospheres, we now
consider a more general situation where both ¹dT dz 0 and
m ¹d dz 0. In order to work with sensible values for these
gradients, we consider the models in Peng & Nagai (2009),
who analyzed the long-term evolution of the concentration of
helium in a one-dimensional setting by solving a coupled set of
Burgers’ equations for a multicomponent plasma in the absence
of a magnetic field. Berlok & Pessah (2015) analyzed the
stability of the Peng & Nagai (2009) model by focusing on
local regions, characterized by fixed temperature and composi-
tion gradients, and modeling these as a plane-parallel
atmosphere.
In this section, we present local simulations with gradients in

temperature and composition estimated at =r r 0.02500 and
=r r 0.5500 with =r 1.63500 Mpc in the Peng & Nagai (2009)

model. These are the locations that were analyzed in Sections
6.6 and 6.4 in Berlok & Pessah (2015), indicated with a C and
an A in Figure 8 in that paper. These two locations correspond
to the inner region where the temperature and composition
increase with radius and the outer region where the temperature
and composition decrease with radius. At these radii, the values
for the logarithmic gradients are = -d T d Pln ln 0.4 and

m = -d d Pln ln 0.13 at =r r 0.02500 and
=d T d Pln ln 0.16 and m =d d Pln ln 0.05 at =r r 0.5500 .

We use the equilibrium derived in Section 3.1.2 with values
taken from the model of Peng & Nagai (2009), =T 6.6 keV0
( =T 9.50 keV) and =c 0.560 ( =c 0.290 ) for the inner (outer)
region. The computational domain is = =L L H 10x z 0 where

=H 500 kpc for the inner region and = =L L H10x z 0 where
=H 0.350 Mpc for the outer region. The gradients in

Figure 5. Growth rate as a function of D (left) and n for fixed values of

c = = -D 10 3 (right). The solid blue line represents the theoretical values
evaluated at =z L 2z , and the green crosses are growth rates obtained from the
simulations.

Figure 6. Left: growth rates in the inner region as a function of = =k k kx z.
Right: growth rates in the outer region as a function of kx for kz = 0. The solid
blue line represents the theoretical values evaluated at =z L 2z , and the green
crosses are growth rates obtained from the simulations.
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composition and temperature are set such that the dimension-
less values of d T d Pln ln and md d Pln ln in the plane-
parallel atmosphere agree with the values in the model of Peng
& Nagai (2009). They are given by =s 2.9c Mpc−1

( = -s 0.19c Mpc−1) and =s 0.058 keVT kpc−1

( = -s 4.3 keVT Mpc−1) for the inner (outer) region.
The values for  n c, , and D are calculated from the model of

Peng & Nagai (2009) as explained in the appendix of Berlok &
Pessah (2015). The dimensionless values are so large that high-
resolution numerical simulations become very computationally
expensive. As this is a test, we have arbitrarily reduced the
values by a factor of 100 in the simulations. We use a value of
b = ´2 106 for both sets of simulations and adopt a
resolution of 32 × 256 (MTCI) and 256 × 256 (HPBI). Some
of the details of the simulations are listed in Table 1 with the
names HPBI_ICM and MTCI_ICM. The growth rates also
depend on the wavenumbers, kx and kz. For the HPBI (in the
inner region) we take = =k k kx z and investigate growth rate
as a function of k. For the MTCI (in the outer region) we take
kz = 0 and investigate the growth rate as a function of kx. The
results are shown in Figure 6, with the growth rates of the
HPBI in the left panel and the growth rates of the MTCI in the
right panel. An estimate shows that the HPBI should be
suppressed by magnetic tension for p -k 2 3.4 kpc 1 and the
MTCI should be suppressed for p -k 2 450 Mpc 1. The
growth rates are in units of 50 and 280Myr, respectively.
Therefore, in physical units, the maximum growth rates in these
simulations are s = -6.4 Gyrmax

1 for the HBPI and
s = -1.2 Gyrmax

1 for the MTCI.

5. SIMULATIONS OF THE NONLINEAR REGIME

In order to study the nonlinear evolution of the MTCI and
the HPBI, we use the reflective boundaries described in
Appendix B. We use the isothermal atmospheres presented in
Section 3.1.1 and seed both velocity components with Gaussian
noise with a standard deviation of 10−4. The simulations are
run without Braginskii viscosity or anisotropic diffusion of
helium, but anisotropic heat conduction is accounted for with a
value of c = ´ -5 10 4. We use a value of 2× 108 for the
plasma-β. An overview of the simulations of the nonlinear
regime can be found in Table 2.

We start out by studying the evolution of the MTCI, i.e., we
consider an atmosphere threaded by a horizontal magnetic
field. The subsequent evolution of the magnetic field and the
plasma composition is illustrated in the upper panel of Figure 7.
In this figure, it is evident that the MTCI is able to mix the
helium content and to completely rearrange the initially ordered
magnetic field. The resulting growths in kinetic and magnetic
energy densities are shown, respectively, in the left and right
panels of Figure 8. The kinetic energies associated with the two
velocity components are roughly in equipartition throughout
the simulation, i.e., r rá ñ » á ñv vx z

2 2 with rá ñvz
2 always larger but

never exceeding rá ñvx
2 by more than an order of magnitude. The

exponential phase of the instability ends at »t 30. After this
point in time, both the kinetic and magnetic energies saturate,
with the former exceeding the latter by two orders of
magnitude. In spite of the fact that á ñBz

2 vanishes initially, by
the end of the simulation the energies associated with the two
magnetic field components are roughly in equipartition with
á ñBz

2 larger than á ñBx
2 by a factor of»2, with á ñBx

2 having grown
by a factor of »8 with respect to its initial value.
We now consider the evolution of the HPBI. The setup is

essentially the same, but the initial magnetic field is now
vertical.5 The evolution of the HPBI is illustrated in the lower
panel of Figure 7 with a resolution of 512 × 512. The initial
vertical magnetic field is rearranged by the HPBI, and, as for
the MTCI, the helium content is mixed by the action of the
instability. The HPBI leads to growth in the magnetic and
kinetic energy densities. In order to asses whether this growth
is numerically converged, we have also run simulations at
resolutions of 128 × 128 and 256 × 256. We show the
evolution of pá ñB 8x

2 and pá ñB 8z
2 for the three different

numerical resolutions in Figure 9. We observe that the
instability leads to exponential growth followed by saturation
in both pá ñB 8x

2 and pá ñB 8z
2 . While the growth rate increases

with increasing resolution, the values in the saturated state
agree quite well.
It is also of interest to understand how the magnetic field

changes from being initially vertical to having a large
horizontal component because the magnetic field inclination
has consequences for heat transport along the vertical direction
of the box. Such studies have been done for both the MTI
(Parrish & Stone 2005, 2007) and the HBI (Parrish & Quataert
2008). These studies were motivated by a need to understand
the cooling flow problem of galaxy clusters (Fabian 1994), and
whether magnetic fields could alleviate this problem. While the
MTI could potentially increase heat transport toward the core
by making the magnetic field be preferentially in the radial
direction (Parrish et al. 2008), the HBI has been shown to lead
to core insulation by driving the magnetic field to be
perpendicular to the radial direction (Parrish & Quataert
2008; Bogdanović et al. 2009; Parrish et al. 2009), which
would exacerbate the cooling flow problem.
In Figure 10, we show the average magnetic field inclination

as a function of time for the simulations of the MTCI and the
HPBI. The average inclination saturates to a value of
approximately q » 45 for both the simulations. This behavior
is qualitatively different from the behavior of the magnetic field
inclination for the MTI and the HBI. The difference can be
explained in the following way. The MTI, which is maximally
unstable when the magnetic field is horizontal, has been found
to drive the saturated magnetic field to be roughly vertical

Table 2
Overview of the Simulations of the Nonlinear Regime Using the Reflective Boundary Conditions

Simulation θ b0 c n D Resolution Figure

MTCI256 0° 2 × 108 5 × 10−4 0 0 256 × 256 7(a), 8, 10
HPBI128 90° 2 × 108 5 × 10−4 0 0 128 × 128 9
HPBI256 90° 2 × 108 5 × 10−4 0 0 256 × 256 9
HPBI512 90° 2 × 108 5 × 10−4 0 0 512 × 512 7(b), 9, 10

5 The boundary conditions on the magnetic field are also slightly different;
see Appendix B.
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(Parrish & Stone 2007). The HBI, which is maximally unstable
when the magnetic field is vertical, drives the magnetic field to
be roughly horizontal (Parrish & Quataert 2008). These
instabilities depend on gradients in temperature that have

opposite directions, and so they cannot be present at the same
time. On the other hand, both the MTCI and the HPBI require a
mean molecular weight that increases with height, and so they
can both be present at the same time. This feature of the MTCI
and the HPBI was discussed in Berlok & Pessah (2015); see
especially Figure 4 in that paper. The interpretation of the left
panel of Figure 10 is therefore that the MTCI aims at driving

Figure 7. Evolution of instabilities in an isothermal atmosphere with m = -d d Pln ln 1 3. The magnetic field lines are shown as solid black lines. The composition
of the plasma is shown with green representing a high concentration and purple representing a low concentration. The MTCI (upper panel) and the HPBI (lower panel)
both give rise to mixing of the helium content. The size of the computational domain is ´H H10 100 0 . The motions generated by the instabilities can be hinted at by
comparing neighboring snapshots but are best understood from the animated version of this figure (see the online version).

(Animations (a and b) of this figure are available.)

Figure 8. Evolution of kinetic (left panel) and magnetic (right panel) energies
for the MTCI. After the initial phase of exponential growth, the instability
saturates with energies that are roughly in equipartition.

Figure 9. Convergence of pá ñB 8x
2 and pá ñB 8z

2 as a function of resolution.
The highest resolution is much more expensive to run because of the
prohibitive time step constraint due to heat conduction; see Appendix A.

Figure 10. Upper panel: evolution of the average inclination of the magnetic
field for the MTCI and the HPBI. Both instabilities seem to drive the average
inclination toward 45°. Lower panel: the average along x of c for the MTCI
(blue) and the HPBI (green) at the end of the exponential phase of the
simulations (t = 30). The initial gradient in c (dashed black line) is diminished
by the instabilities.
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the magnetic field angle toward 90° while the HPBI aims at
driving the magnetic field angle toward 0°. In the end, they
reach a compromise at roughly 45°.

The helium mass concentration, c, dramatically changes, and
the initial gradient is diminished by the instability as time
progresses. This is illustrated in the lower panel of Figure 10
for both the MTCI and the HPBI. As explained in the
introduction, gradients in composition can introduce biases in
key cluster parameters. We are therefore interested in under-
standing whether such gradients, if initially present, will be
robust. The simulations presented here are heavily idealized,
among many reasons because the gas is assumed to be initially
isothermal and the simulations are local. Nevertheless, these
simulations serve as a proof of principle that gradients in
composition can indeed be altered by turbulent mixing induced
by plasma instabilities. Future work, using realistic gradients
for temperature and composition as well as transport
coefficients, should allow us to understand whether such
mixing can occur on timescales relevant for galaxy clusters.

6. SUMMARY AND DISCUSSION

In this paper we have introduced a modified version of
Athena (Stone et al. 2008) for performing kinetic MHD
simulations of weakly collisional plasmas with nonuniform
composition. We have employed this modified code to perform
the first simulations of the MTCI, the HPBI, and the diffusion
modes introduced in Pessah & Chakraborty (2013). The set of
simulations, aimed at investigating the linear evolution of these
instabilities, served as a test for both the modification to Athena
and the local linear mode analysis in Pessah & Chakraborty
(2013) and Berlok & Pessah (2015).

The simulations of weakly collisional, isothermal atmo-
spheres with a gradient in helium presented in Section 5
showed that the plasma instabilities, feeding off gradients in
composition, can induce turbulent mixing of the helium
content. This conclusion is valid for compositions that increase
in the direction anti-parallel to gravity, regardless of whether
the initial magnetic field is parallel or perpendicular to the
direction of gravity. In the saturated state, the magnetic field
components in the x and z directions have roughly the same
average energy, but the energies are a factor of 10 higher for
the HPBI than for the MTCI. The kinetic energy components
are also roughly in equipartition. In both cases, the instabilities
saturate by driving the average magnetic field inclination to
roughly 45°. This effect seems to open the possibility of
alleviating the core insulation observed in previous homo-
geneous simulations of the HBI, provided that the global
cluster dynamics were to allow for an increase in the mean
molecular weight with radius in the inner region, as envisioned
by current (one-dimensional, unmagnetized) helium sedimen-
tation models (Peng & Nagai 2009).

The simulations of the nonlinear regime of the MTCI and the
HBPI presented in this paper considered an isothermal
atmosphere as the equilibrium background. It would be an
improvement to use the model of Peng & Nagai (2009) to
determine the gradients in both temperature and composition.
This would provide insight into the saturation of instabilities in
potentially more realistic scenarios where the dynamical
evolution is determined by the simultaneous effects of both
gradients. Before proceeding with this endeavor, there are,
however, a few issues that would be desirable to address, as we
detail below.

It was found in Berlok & Pessah (2015) that the HPBI, if
present in the inner regions of the ICM model of Peng & Nagai
(2009), will have its fastest growth rates at wavelengths that are
longer than the scale height of the atmosphere. This conclusion
is similar to what was found for the HBI in Kunz (2011).
Neither local linear theory nor local simulations will therefore
capture the physics of the HPBI in the inner region of the ICM.
This implies that both a quasi-global theory and simulations are
needed in order to study the influence of the possible gradient
in composition on the dynamics of the inner region of the ICM.
Local simulations of the MTI have been shown to under-

estimate the turbulence (McCourt et al. 2011), and boundary
effects can also modify the conclusions from local simulations.
The solution to this problem for the MTI has been to sandwich
the unstable region between stable layers, thereby isolating it
from the boundaries (Parrish & Stone 2005, 2007; Kunz et al.
2012). A similar approach seems reasonable for the MTCI.
Other complications stem from the fact that pressure

anisotropies, shown to be important for the evolution of the
MTI and HBI (Kunz 2011; Kunz et al. 2012), can give rise to
microscale instabilities such as the firehose and mirror
instability (Schekochihin & Cowley 2006; Schekochihin
et al. 2010). These small-scale instabilities are only excited
once the pressure anisotropy grows beyond ∣ ∣  b- ^

-p p P 1.
They do not appear in the tests of the linear regime of the
MTCI, HPBI, and the diffusion modes presented in Section 4
because we terminate the simulations before the stability
criterion is violated. They are not present in the simulations of
the nonlinear regime in Section 5 because we take the pressure
to be isotropic in these simulations (no Braginskii viscosity).
The problem with microscale instabilities is that they are not
correctly described by the framework of kinetic MHD
(Schekochihin et al. 2005), an issue that will need to be
addressed for simulations of the nonlinear evolution of the
MTCI and the HPBI when Braginskii viscosity is included (see
Kunz et al. 2012 for a discussion of these issues in the context
of the MTI and the HBI).
All this being said, our study suggests that, at least in the

idealized settings that we considered here, gradients in
composition are able to drive turbulent mixing of the
composition in weakly collisional, magnetized plasmas. This
motivates future work on the generation and sustainment of
both temperature and composition gradients in galaxy clusters
and their potential influence on the global dynamics of the
ICM. We envision that the modified version of Athena that we
developed will be a useful asset in this context. In order to
model more realistically the physics of the ICM, future
improvements could include extending the simulations to three
dimensions and adding optically thin cooling in order to study
the cooling flow problem. Furthermore, the equations of kinetic
MHD, as embodied in Equations (1)–(5), cannot account for
the slow sedimentation of helium that is the core feature in the
model of Peng & Nagai (2009). An extension of the framework
of kinetic MHD to include this effect would allow us to self-
consistently include sedimentation in the simulations (Bahcall
& Loeb 1990; Berlok & Pessah 2015) and study the effects of
the instabilities described in this paper in a dynamic, slowly
varying background.
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APPENDIX

In this appendix, we describe the numerical methods used in
this paper. We use the publicly available MHD code Athena,
which solves the conservative form of the MHD equations. The
algorithms used are described in Gardiner & Stone (2005) and
Stone & Gardiner (2009), and the implementation of Athena
along with tests is described in detail in Stone et al. (2008).
Athena is a finite-volume code, which uses the Godunov
method. We use the directionally unsplit corner transport
upwind method along with constrained transport (CTU + CT),
which is the recommended setting. We furthermore use the
anisotropic heat conduction module that was implemented in
Athena by Parrish & Stone (2005) using operator splitting.

Appendix A explains the implementation of a spatially
varying mean molecular weight, μ, the anisotropic diffusion of
helium and tests cases, in Athena. In Appendix B we discuss in
detail the boundary conditions used in the simulations.

APPENDIX A
IMPLEMENTATION OF ANISOTROPIC DIFFUSION OF

COMPOSITION IN ATHENA

Let us consider the equation describing the evolution of the
helium mass concentration, r r=c He , given by6

· ·( ) ( )¶
¶

+  = -v Q
c

t
c . 25c

Athena has an option for adding passive scalars, which we use
for adding the helium mass concentration. This option turns on
an extra equation,

·( ) ( ) ( )r
r

¶
¶

+  =v
c

t
c 0, 26n

n

where ρ is the total density and cn is the mass concentration of
the nth scalar. We only add a single scalar, namely, the helium
mass concentration, c. This built-in function takes care of the
Lagrangian part of Equation (25). The diffusion term is then
solved using a finite-difference scheme and operator splitting.

Anisotropic diffusion of helium is described by the right-
hand side of Equation (25), which, when =v 0, reduces to

· · ·( ˆ ˆ ) ( )¶
¶

= - =  Q bb
c

t
D c . 27c

The composition flux for anisotropic helium diffusion has the
same form as the heat flux for anisotropic heat conduction, as
seen by comparing Equations (12) and (11), respectively. We
can therefore use the same method to calculate the two
physically different anisotropic fluxes. The original implemen-
tation of anisotropic heat conduction was done by Parrish &
Stone (2005) using an asymmetric finite-difference scheme
(Sharma & Hammett 2007; van Es et al. 2014).
Nonideal effects are computationally expensive because they

are generally described by parabolic operators that cannot be
added to the hyperbolic fluxes used in the Godunov scheme. The
parabolic operators can be shown to have a very prohibitive
time-step constraint (Durran 2010) for heat conduction and
concentration diffusion as given by, respectively,

( ) ( )


 k g
D <

D
-

ct
b x

1
, 28

2

( ) ( )D <
D

t b
x

D
. 29D

2

Here  k c= T P is the heat diffusivity, the parameter b is
=b 1 2, 1 4, 1 6 in one, two, and three dimensions,

respectively, and Dx is the grid size.
The Courant number, C, is defined to be the ratio of the applied

time step to the allowed time step. We use C = 0.4 in all our
simulations. Because D µ Dt xMHD , the very prohibitive con-
straints on the time step for the parabolic operators will generally
lead to D D ~ Dct t tDMHD . In order to partially circumvent
this problem, we use subcycling, taking up to 10 diffusion steps
for each MHD step, as suggested in Kunz et al. (2012).
Sharma & Hammett (2007) found that the finite-difference

approximation can lead to unphysical behavior with diffusion
in the wrong direction. In the context of heat diffusion this
problem can lead to negative temperatures and therefore an
imaginary sound speed. The same problem arises when
considering helium diffusion, and we use van Leer limiters
on the derivatives to circumvent it (Sharma & Hammett 2007).
The publicly available version of Athena works with constant

viscosity, n , and heat diffusivity,  k c= T P. However, these
coefficients, as well as the diffusion coefficient D, do in general
depend on temperature, density, and composition; see, for
instance, the discussion in the appendix of Berlok & Pessah
(2015). Accounting for this dependence is not crucial in local
simulations, but it becomes essential in global simulations. We
have modified Athena to use spatially varying coefficients by
using a harmonic average of the coefficients (Sharma &
Hammett 2007). This makes the time step computed from
Equations (28) and (29) spatially dependent. We therefore
calculate the time step at each cell and use the minimum value.
This implementation will be useful in future global studies.

A.1. Tests of the Implementation of Anisotropic Diffusion

In order to verify the implementation of anisotropic diffusion
of helium, we performed three different test problems with a
known analytical solution. These tests were carried out with the
MHD solver turned off.

6 We do not consider the effects of thermo-diffusion and baro-diffusion,
which makes our current model unable to describe the slow sedimentation of
helium (Bahcall & Loeb 1990) that can give rise to a composition gradient.
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A.1.1. One-dimensional Diffusion

We consider the diffusion of a step function as in Rasera &
Chandran (2008) using a one-dimensional grid with 100 cells
on the domain [ ]=x 0, 1 with D = 1 and run the simulation up
to t = 0.0028. The analytical solution to the diffusion of a step
function is

( ) ( )= +
D


-⎛

⎝⎜
⎞
⎠⎟c x t c

c x x

Dt
,

2
erf

4
, 300

0

where =c 3 20 and D =c 1. The “+” sign is used with
=x 0.250 for <x 0.5 and the “−” sign is used with =x 0.750

for >x 0.5. The numerical result matches the analytical
solution, as seen in Figure 11, implying that the method works
well in one dimension.

A.1.2. Diffusion of a 2D Gaussian

A more challenging test can be posed by considering the
magnetic field to be inclined at an angle, θ, with respect to the
grid. We consider an initially isotropic, 2D Gaussian distribu-
tion of helium diffusing out along an inclined magnetic field.
The analytical solution is7

( ) ( )
( )

( )
( ) ( )

p
q q

q q

= -
+

´ -
-

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

c x y t
a t a

x y

a t

y x

a

, ,
1

2
exp

cos sin

2

exp
cos sin

2
, 31

0

2

2

2

0
2

where ( ) = +a t a Dt22
0
2 and a0 is the initial standard

deviation of the Gaussian.
The computational domain is a [ ] [ ]- ´ -1, 1 1, 1 Cartesian

box. We use =a 1 80 and D = 0.001. The errors at t = 4 are
compared to the analytical solution in Figure 12. In the left
panel the L2 errors are shown as a function of the magnetic field
inclination and resolution. These errors are smallest when
q = 0 or q p= 2, corresponding to the grid and the magnetic
field being aligned. In the right panel we show that the solution
for q = 40 converges as ( )µ DL x ,m

2 where Dx is the
(uniform) grid spacing and m= 1.9 is the order of convergence.

A.1.3. Diffusion of a High-concentration Patch in a Circular Magnetic
Field

The final and most challenging test that we carry out for
anisotropic transport was introduced in Parrish & Stone (2005).
We consider a Cartesian box of size [ ] [ ]- ´ -1, 1 1, 1 with a
patch with higher concentration c, specifically8

( )

p q p= < < - < <⎧⎨⎩c r12 if 0.5 0.7 and 12 12,
10 otherwise.

32

The density is uniform with r = 1, and the magnetic field is
circular. In order to ensure · =B 0, the magnetic field was
initialized with a vector potential satisfying  ´ =A B.
We considered the value D = 0.01 and run the simulation

until t = 200. The overconcentration diffuses out along the
magnetic field lines, as observed in Figure 13. We have run this
test problem with the same resolutions as Sharma & Hammett
(2007) and obtain the exact same values quoted there for the
error norms associated with the resolutions 200 × 200 and
400 × 400. For instance, for a resolution of 200 × 200, we
obtain = =L L0.0264, 0.04071 2 , = =¥L c0.0928, 10min ,
and =c 10.1016max at t = 200 as stated in Sharma & Hammett
(2007).
It is evident from Figure 13 that, even though only

anisotropic diffusion is explicitly turned on, there is still a
small amount of numerical, perpendicular diffusion. This is
undesired in simulations of instabilities because isotropic
diffusion will lower the growth rates or even quench the
instabilities. This was investigated by Parrish & Stone (2005)
for the MTI, who found that it is, however, insensitive to
perpendicular diffusion provided that c c <^

-10 3. The fact
that we find the correct analytical growth rates for all
simulations discussed in Section 4 shows that the numerical
perpendicular diffusion is not a problem for our present
purposes.

APPENDIX B
BOUNDARY CONDITIONS

In the horizontal direction we use the periodic boundary
conditions that Athena provides as a standard option. In the
vertical direction, boundary conditions that maintain hydro-
static equilibrium are required. In this section we describe the
conventional, reflective boundary conditions, as well as the
quasi-periodic boundary conditions alluded to in Section 3.2.

B.1. Reflective Boundary Conditions

Our implementation of reflective boundary conditions
follows the description in Zingale et al. (2002). Hydrostatic
equilibrium requires that Equation (13) is satisfied. This
requirement can be approximated by

( ) ( )r r r- =
D

+ -+ + -P P
ag z

12
5 8 2 , 33i i i i i1 1 1

Figure 11. Diffusion of a step function. The initial condition is shown with a
dashed line. The green crosses correspond to data from the simulation, and the
solid blue line is the analytical solution at t = 0.0028.

7 This result can be derived by solving the one-dimensional diffusion
equation for a Gaussian initial distribution followed by a rotation of the
coordinate system. The one-dimensional problem is solved by using a Fourier
transform in space and a Laplace transform in time.
8 This test was constructed for the anisotropic heat conduction. We are using
the same initial values (10 and 12) as in the literature, making it easier to
compare the results. These values are of course not meaningful values for c, but
it still serves as a test of the implementation of anisotropic diffusion. The same
considerations apply to the step function test.
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where a = 1 ( = -a 1 ) at the top (bottom) of the domain. In
this notation, i refers to cell i and +i 1 refers to one cell further
up (down) when a = 1 ( = -a 1). This equation is then solved
for r +i 1 using that

( )r
m

=+
+ +

+

P
T

, 34i
i i

i
1

1 1

1

along with an assumption on m +i 1 and +Ti 1. Either one can
assume m m= +i i 1 and = +T Ti i 1, or one can prescribe the values
at the boundaries to be equal to their initial values, i.e.,
m m=+i 1 0 and =+T Ti 1 0. In the case where the mean molecular
weight μ is not included, Parrish & Stone (2005) refer to these
boundary conditions as adiabatic and conductive, respectively.
A combination of these two boundary conditions is also
possible (i.e., fixing μ and varying T or vice versa). We have
implemented all four combinations but will only discuss the
conducting boundary conditions (m m=+i 1 0 and =+T Ti 1 0) in
the following, since these are the boundary conditions used in
Section 5.

Solving Equations (33) and (34) for r +i 1 and +Pi 1, we find

( ) ( )r
a r r
m a

=
+ -

-+
-P

T

8

5
35i

i i i
1

1

0 0

and r m=+ +P Ti i1 1 0 0, where

( )a =
Da z g

12
. 36

These relations are used to calculate the density and pressure of
the four ghost zones at the top and bottom of the computational
domain. At the same time, velocity is reflected symmetrically
around z = 0 and =z Lz. The magnetic field components are
also mirrored. In the case of an initially vertical magnetic field,
we let the Bx component change sign, whereas in the case of an
initially horizontal magnetic field, we let the Bz component
change sign. This forces the field to remain vertical (horizontal)
at the boundary in the case of an initially vertical (horizon-
tal) field.

Athena uses the Godunov scheme, which is known not to be
optimal at maintaining hydrostatic equilibrium (Zingale
et al. 2002). The reason is that the pressure term in the
momentum equation is not solved simultaneously with the

gravity term. There are ways to modify a Godunov scheme
such that this problem is circumvented; see, for instance,
Zingale et al. (2002) and Käppeli & Mishra (2014). We use a
high numerical resolution and a low Courant number (C = 0.4)
in order to maintain hydrostatic equilibrium as well as possible.
The minimum amplitude we can use for perturbations in v is,
however, limited by the numerical noise caused by the inability
of the code to perfectly maintain hydrostatic equilibrium, in
agreement with the findings of Parrish et al. (2012b).

B.2. Quasi-periodic Boundary Conditions

A key assumption in standard local linear mode analysis,
such as presented in Pessah & Chakraborty (2013) and Berlok
& Pessah (2015), is that the perturbations have the spatial
dependence ·( )k xiexp . This assumption is not fulfilled for the
reflective boundary conditions, and it is thus impossible to
cleanly excite a single eigenmode, the problem being that the
boundary conditions excite other modes in an uncontrolled
way. We originally realized this problem when we studied the
HBI, but it persists in the case of the HPBI and its diffusive
variant. The problem is not present for the MTI and the MTCI
in the case kz = 0 because the boundaries are periodic in x.
We have developed special boundary conditions that are

consistent with the assumptions used in the local mode
analysis. One of the key assumptions here is that the perturbed
quantities d d dv v B, ,x z x, d dr r dm mB , ,z , and dT T are
periodic. In the following, the values outside the computational
domain (the ghost zones) are denoted by a subscript g, and the
values on the inside are denoted by a subscript i. The subscript
“eq” refers to the value of the equilibrium background (as given
in Sections 3.1.1 or 3.1.2). The mapping from interior to ghost
zones ( i g) is the same as for periodic boundary conditions.
Instead of directly mapping the interior values to the ghost
zones, we let the ghost zones depend on the change in the
interior values with respect to the equilibrium background. The

Figure 13. The patch with a high concentration of c diffuses out along the
circular magnetic field. Snapshots at =t 0, 25, 75, and 200. The color scale is
from 10 to 10.2, and the perpendicular diffusion is small. The resolution in this
numerical experiment is 400 × 400.

Figure 12. Left: L2 error as a function of magnetic field inclination.
Resolutions of N × N with =N 32, 64, 128, 256, 512, and 1024 were used
with monotonically decreasing L2 at all angles. As expected, the asymmetric
finite-difference scheme gives the best result when the magnetic field is aligned
with the grid. Right: convergence to the exact solution with decreasingDx for a
magnetic field inclined at 40° from the x-axis.
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quasi-periodic boundary conditions are then defined as

( )r r
r r

r
= +

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟1 , 37g g

i i

i
,eq

,eq

,eq

( )= +
-⎛

⎝⎜
⎞
⎠⎟T T

T T

T
1 , 38g g

i i

i
,eq

,eq

,eq

( )m m
m m

m
= +

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟1 , 39g g

i i

i
,eq

,eq

,eq

with the pressure given by r m=P Tg g g g. The equilibrium
magnetic field and velocity do not have a gradient, and so their
boundary conditions are simply periodic, i.e., =v vg i and

=B Bg i. These are the boundary conditions we used in
Section 4.
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ABSTRACT

The assumption of a spatially uniform helium distribution in the intracluster medium (ICM) can lead to biases in
the estimates of key cluster parameters if composition gradients are present. The helium concentration profile in
galaxy clusters is unfortunately not directly observable. Current models addressing the putative sedimentation are
one-dimensional and parametrize the presence of magnetic fields in a crude way, ignoring the weakly collisional,
magnetized nature of the medium. When these effects are considered, a wide variety of instabilities can play an
important role in the plasma dynamics. In a series of recent papers, we have developed the local, linear theory of
these instabilities and addressed their nonlinear development with a modified version of Athena. Here, we extend
our study by developing a quasi-global approach that we use to simulate the mixing of helium as induced by
generalizations of the heat-flux-driven buoyancy instability (HBI) and the magnetothermal instability, which feed
off thermal and composition gradients. In the inner region of the ICM, mixing can occur over afew gigayears, after
which the average magnetic field inclination angle is ∼30°–50°, resulting in an averaged Spitzer parameter higher
by about 20% than the value obtained in homogeneous simulations. In the cluster outskirts the instabilities are
rather inefficient, due to the shallow gradients. This suggests that compositiongradients in cluster cores might be
shallower than one-dimensional models predict. More quantitative statements demand more refined models that
can incorporate the physics driving the sedimentation process and simultaneously account for the weakly
collisional nature of the plasma.

Key words: diffusion – galaxies: clusters: intracluster medium – instabilities – magnetohydrodynamics (MHD)

1. INTRODUCTION

The intracluster medium (ICM) of galaxy clusters is
comprised of a very high-temperature and low-density gas in
which charged particles are bound to the magnetic field with
gyroradii that are much smaller than the mean-free path of
particle collisions. In this weakly collisional medium, the weak
(∼μG) magnetic field (Carilli & Taylor 2002) channels the
transport of heat and momentum, as well as the diffusion of
particles. The anisotropic character of the weakly collisional
ICM has been found to significantly alter its dynamical
properties. Whereas the stability of a stratified gas in the
presence of a gravitational field is governed by its entropy
gradient (Ledoux 1947; Schwarzschild 1958), Balbus
(2000, 2001) and Quataert (2008) found that temperature
gradients can have an important impact on the stability
properties if the plasma is weakly collisional. Two distinct
instabilities were found to feed off temperature gradients in
weakly collisional plane–parallel atmospheres, even when their
entropy increases with height. The discovery of the magne-
tothermal instability (MTI, Balbus 2000, 2001), which
ismaximally unstable when the magnetic field is perpend-
icular to gravity andthe temperature decreases with height, and
the heat-flux-driven buoyancy instability (HBI, Quataert 2008),
which ismaximally unstable when the magnetic field is parallel
to gravity and the temperature increases with height, led to a
surge in research on the stability properties of the ICM during
the last decade.

These investigations considered both two- and three-
dimensional simulations in local, quasi-global, and even global
settings including a variety of physical effects, for instance,
anisotropic heat conduction, Braginskii viscosity, radiative
cooling, and imposed turbulence (Parrish & Stone 2005, 2007;
Parrish & Quataert 2008; Parrish et al. 2008, 2009, 2010,
2012a, 2012b; Bogdanović et al. 2009; Ruszkowski &

Oh 2010; McCourt et al. 2011, 2012; Kunz et al. 2012). This
collection of studies have led to a better understanding of a
number of fundamental issues governing ICM plasma
dynamics (see Balbus & Potter 2016 for a recent review of
the physics of the MTI and HBI). In particular, Kunz (2011)
pointed out that Braginskii viscosity makes the fastest growing
wavelengths for the HBI very long in the direction parallel to
gravity (see also Gupta et al. 2016). This limited the validity of
the local approaches employed thus far and ultimately led to
quasi-global studies of the HBI (Kunz et al. 2012; Latter &
Kunz 2012).
While the temperature distribution of the ICM is observable

(Vikhlinin et al. 2006), the fact that most elements are
completely ionized makes it difficult to constrain the composi-
tion of the plasma. If present, composition gradients, as
envisioned, for example, by the sedimentation of helium over a
Hubble time, can lead to biases in the estimates of key cluster
properties with important implications for cosmology (Marke-
vitch 2007; Peng & Nagai 2009). This has motivated the study
of the long-term dynamics of heavy elements in the ICM. As an
example, the models in Peng & Nagai (2009) predict that
composition gradients can lead to a bias of up to 20% in the
Hubble constant if the total mass of the cluster is estimated
assuming a uniform, primordial composition (see Figure4 in
Peng & Nagai 2009). The models for the evolution of the radial
distribution of elements are one-dimensional (Fabian &
Pringle 1977; Gilfanov & Syunyaev 1984; Chuzhoy &
Nusser 2003; Chuzhoy & Loeb 2004; Peng & Nagai 2009;
Shtykovskiy & Gilfanov 2010) and consider the effects of
magnetic fields in rather simplified form, or ignore it altogether.
Motivated by the need fora more fundamental approach to

understand the role of magnetic fields in the dynamics of
weakly collisional media, Pessah & Chakraborty (2013) and
Berlok & Pessah (2015) extended the works carried out in
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homogeneous settings by Balbus (2000, 2001), Quataert
(2008), and Kunz (2011) to include composition gradients.
They showed that a host of instabilities feeding off composition
gradients can have an important impact on the stability
properties of the ICM. Two of these instabilities are the
generalizations of the MTI and HBI, namely the magneto-
thermo-compositional instability (MTCI) and the heat- and
particle-flux-driven buoyancy instability (HPBI). Both instabil-
ities can be active even for isothermal atmospheres if the mean
molecular weight increases with height, even if the entropy
gradient increases with height.

In order to understand how the new instabilities driven by
composition gradients saturate, Berlok & Pessah (2016)
considered the nonlinear evolution of the MTCI and the HPBI
in local, isothermal settings, using a modified version of the
magnetohydrodynamics (MHD) code Athena (Stone
et al. 2008). These simplifying assumptions made it possible
to understand some of the differences observed in the saturated
state of instabilities that are driven by either thermal or
composition gradients alone. A notable difference is that the
instabilities driven exclusively by composition gradients
saturate with an average magnetic field inclination of 45°.
This is in contrast with the thermal instabilities, where the MTI
drives the magnetic field to be almost parallel to gravity
(Parrish & Stone 2005) and the HBI drives the magnetic field to
be almost perpendicular to gravity (Parrish & Quataert 2008).

In this paper, we present the first two-dimensional (2D)
quasi-global simulations of plane–parallel atmospheres with
initial equilibrium structures inspired by the models of Peng &
Nagai (2009), that we use to model the inner and outer regions
of the ICM. We show that the HPBI leads to mixing of the
helium content in the inner regions of the ICM and, as a
consequence, diminishes the initial gradient in composition.
The inclusion of a composition gradient leads to an ∼20%
increase in heat flux to the core at late times compared to a
simulation of a homogeneous ICM.

The paper is organized as follows.In Section 2, we
introduce the equations of Braginskii-MHD that we employ
to model a completely ionized plasma composed of hydrogen
and helium. In Section 3, we present an equilibrium
atmosphere for the inner regions of the ICM, which is based
on the helium sedimentation model of Peng & Nagai (2009).
This atmosphere is then studied in Section 4 by using a quasi-
global linear theory and in Section 5 by performing a suite of
simulations using a modified version of the MHD code Athena
(Stone et al. 2008; Berlok & Pessah 2016). We also present in
Section 6 simulations of the outer region of the ICM, where the
MTCI could be active. We conclude in Section 7 by discussing
the consequences of plasma instabilities on the long-term
evolution of composition gradients in the ICM as well as the
limitations of our present approach.

2. BRAGINSKII-MHD FOR A BINARY MIXTURE

We model the ICM by solving equations that evolve the total
mass density, ρ, momentum density, rv, magnetic field, B, total
energy density, E, and composition, c, for a weakly collisional
binary mixture of hydrogen and helium. Here, v is the fluid
velocity and the total energy density of the plasma is given by

r
p g

= + +
-

E v
B P1

2 8 1
, 12

2 ( )

where γ=5/3 is the adiabatic index and P is the thermal gas
pressure. We assume the magnetic field to have thedirection
=b b b, 0,x z

ˆ ( ) and define the composition of the plasma as

r
r

ºc . 2He ( )

The plasma is assumed to obey the ideal gas law

r
m

=P
k T

m
, 3B

H
( )

where T is the temperature, mH is the proton mass, and kB is
Boltzmann’s constant. The mean molecular weight, μ, which
enters inEquation (3), can be shown to be related to the
composition by

m =
- c

4

8 5
, 4( )

for a completely ionized mixture of hydrogen and helium.
The equations of motion are (Pessah & Chakraborty 2013;

Berlok & Pessah 2016)the continuity equation for the total
mass

r
r

¶
¶

+  =v
t

0, 5· ( ) ( )
the momentum equation

I
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the energy equation
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the induction equation for the magnetic field

¶
¶

=  ´ ´
B

v B
t

, 8( ) ( )
and the continuity equation for the helium mass

r
r

¶
¶

+  = -v Q
c

t
c . 9c

( ) · ( ) · ( )
In these equations, PT is the total pressure (gas + magnetic) and
= -g g0, 0,( ) is the gravitational acceleration, which we

assume to be constant.
The equations include terms that take into account the

influence of three anisotropic effects. These anisotropic effects
arise because the plasma is weakly collisional and weakly
magnetized. In this regime, the charged particles are effectively
bound to the magnetic field and collisions occur primarily
along the magnetic field. This causes the associated transport
phenomena tobe directed along the magnetic field.
Electrons, which are responsible for heat conduction, can in

this way create a heat flux along the magnetic field given by

c= - Q bb T , 10s
ˆ ˆ · ( )

where c is the Spitzer heat conductivity (Spitzer 1962).
Similarly, the continuity equation for the helium density

includes a flux of composition along the magnetic field given

2
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by (Bahcall & Loeb 1990; Pessah & Chakraborty 2013)

= - Q bbD c, 11c
ˆ ˆ · ( )

where D is the diffusion coefficient.
Finally, theconservation of the first adiabatic invariant of the

ions can lead to anisotropy in the pressure tensor with
differences in the parallel ( p ) and perpendicular ( p̂ ) pressures.
This pressure difference results in gradients in velocity
components along the magnetic field being viscously damped.
This effect, called Braginskii viscosity (Braginskii 1965), is
described by the viscosity tensor

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠rnP = - - -  bb I bb I v3

1

3

1

3
: , 12ˆ ˆ ˆ ˆ ( )

where n is the viscosity coefficient and I is a unit tensor.
Expressions for the dependence of c, D,and n for an

ionized mixture of hydrogen and helium can be found in the
appendix of Berlok & Pessah (2015). More details about the
utility of Braginskii MHD and its range of applicability can be
found in Schekochihin et al. (2005), Kunz et al. (2012), Pessah
& Chakraborty (2013), and references therein.

For future reference, we also define the plasma-
b p= =P B v v8 2 ,2

th
2

A
2 where pr=v B 4A is the Alfvén

speed and r=v Pth is the thermal speed.

3. EQUILIBRIUM PROFILE

In order to understand the quasi-global linear dynamics
arising from Equations (5)–(9), we derive an equilibrium
profile for a model plane–parallel atmosphere, which has
proven to be useful for capturing key aspects of the plasma
dynamics in galaxy clusters. We assume that gravity can be
modeled locally via a constant acceleration, g, and that the
magnetic field is purely vertical, i.e., bx=0 and bz=1. The
magnetic field is assumed to be weak enough that we can
neglect its contribution to the total pressure gradient respon-
sible for hydrostatic equilibrium. Nevertheless, the vertical
weak magnetic field can enable a background heat flux in the
vertical direction. Therefore, in order for the model atmosphere
to be in equilibrium, we require  =Q 0c· and  =Q 0c· .
In what follows, we ignore helium diffusion and assume D=0
such that the second condition is trivially satisfied.

Motivated by the models considered in Peng & Nagai
(2009), which result in helium concentration profiles that peak
off-center, we consider a situation where the composition of the
plasma increases linearly outwardfrom the bottom of the
atmosphere, i.e., center of the cluster, as

= +c z c s z, 130 c( ) ( )
where = -s c c LZ Zc 0( ) is the slope in composition. Notice
that the mass concentration of helium, c(z), is related to the
mean molecular weight, μ(z), by

m =
-

z
c z

4

8 5
, 14( ) ( ) ( )

for a completely ionized plasma of hydrogen and helium. The
equilibrium needs to fulfill

⎛
⎝⎜

⎞
⎠⎟c =

d

dz

dT

dz
0, 15( )

where c is a function of temperature T(z) and composition,
c(z). We will for simplicity assume that c depends only on

temperature as c c=  T T,0 0
5 2( ) , i.e., we assume that the

dependence on composition can be neglected.1 With this
assumption, Equation (15) is identical to the one derived in
Latter & Kunz (2012) and it decouples from the rest of the
equations yielding the solution

z= +T z T z1 , 160
2 7( ) ( ) ( )

where z = -L T T 1Z Z 0
7 2( ) and TZ T0( ) is the temperature at

the top (bottom) of the atmosphere. Using the equation of state

r
m

=P z
z k T z

z m
, 17B

H
( ) ( ) ( )

( ) ( )

we solve the equation for hydrostatic equilibrium

r
¶
¶

= -
P

z
g, 18( )

and find

= -P z P e , 19h h z
0

0( ) ( )( ) ( )

where the function h(z) is related to a Gauss hypergeometric
function, F2 1, as
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In deriving the above result, we have introduced the scale
height at the bottom of the atmosphere

m
=H

k T

m g
, 210

B 0

0 H
( )

and the parameter

a m z= +s5 4 . 22c 0 ( )
The density, ρ(z), can then be found from Equation (3).
The values of the constants used for this equilibrium

atmosphere are inspired by the model of Peng & Nagai
(2009). In physical units, the model atmosphere has aheight
of = =L H2 80 kpcZ 0 , corresponding to the region between
r/r500=0.01 and r/r500=0.06 with r500=1.63 Mpc in their
model. The values for the temperature and composition of the
plasma at the top and bottom of the atmosphere are given by
TZ=9.6 keV, T0=5.8 keV, cZ=0.62, and c0=0.52,
respectively. In Figure 1, we show P(z)/P0, ρ(z)/ρ0, T(z)/T0,
μ(z)/μ0,and H m k ds dz2 30 H B( )( ), where the entropy per unit
mass is defined by

⎡
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3

2
ln . 23B

H 0 0
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Note that, even though the composition increases with height,
the Ledoux criterion for stability (Ledoux 1947; which is the
generalization of the Schwarzschild criterion, Schwarzs-
child 1958, valid for a heterogeneous collisional medium) is

1 For the profiles employed here, the dependence on composition is much
weaker than the dependence on temperature (Pessah & Chakraborty 2013). The
maximum error incurred by using this approximation is less than 5% on the
value of c at the top of the atmosphere.
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not violated. Indeed, for this model atmosphere, the entropy is
an increasing function of height, i.e.,

>
ds

dz
0, 24( )

as illustrated in Figure 1. As we will discuss next, the
instabilities present in the linear theory and in the simulations
are due to the weakly collisional nature of the plasma.

4. QUASI-GLOBAL LINEAR THEORY

The HPBI has its fastest growth rates on radial scales longer
than a scale height when Braginskii viscosity is included in the
analysis (Berlok & Pessah 2015). The local linear mode
analysis is therefore not strictly valid becauseit assumes that
the radial scales are much shorter than a scale height. This
problem has previously been found for the HBI in Kunz (2011)
and solved by introducing a quasi-global linear theory for the
HBI in Latter & Kunz (2012). In the same vein, in this section,
we develop a quasi-global linear theory for the HPBI by
considering a model atmosphere with a non-uniform mean
molecular weight.

The purpose of deriving a quasi-global theory is to predict
the growth rates of the instability as a function of perpendicular
wavenumber, kx, in order to understand whether the instability
will grow on astrophysically relevant timescales. Furthermore,
the eigenmodes obtained from linear theory can also be used to
compare with the linear stage of simulations using Athena.
Such a comparison will serve as a test of our modified version
of Athena in Section 4.3.

4.1. Equations of Motion and Relevant Parameters

The equations governing the quasi-global, linear dynamics
for the perturbations are obtained from the equations of
Braginskii-MHD for a binary mixture (Pessah & Chakra-
borty 2013; Berlok & Pessah 2015) by using a Fourier
transform along the x-coordinate but retaining the z-derivatives
explicitly in order to relax the local approximation. Therefore,
the perturbations are calculated in terms of the complex Fourier

coefficients, f k z,x
˜ ( ), which we assume to have a time

dependence, stexp( ), where σ is the (in general complex)
eigenvalue. We assume that c c=  T T,0 0

5 2( ) and

n n r r=  T T,0 0 0
5 2( ) , i.e., c and n only depend on the

composition through the constants c,0 and n,0. We also
introduce a flux function such that =  ´B yA( ˆ). The initial
condition is =A Bx which is equivalent to =B zBˆ. In the
present work, we only consider the case of D=0. In this case,
and with the above caveats, the quasi-global linearized
equations arethe continuity equation
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the z-component of the momentum equation
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the entropy equation (with γ= 5/3)
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the induction equation

sd d= -A v , 29x ( )
and the equation for the mean molecular weight, μ,

s
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m

d
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ln
. 30z ( )

Here, the perturbation to the flux function is related to the
perturbation to the magnetic field by d d=  ´B yA( ˆ).
Equations (25)–(30) have been written in dimensionless

variables by scaling μ with μ0, T with T0, the velocities with
vth,0, σ with s = =-t v H0 0

1
th,0 0, δA with B0 H0,and z with H0

such that kx is scaled with 1/H0. The background heat flux
parameter q0, is given by

= -q T
d T

dz

ln
, 310

7 2 ( )

in dimensionless variables. At the bottom of the atmosphere,
z=0, the Peclet number is given by

c
= »



v P H

T
Pe 70, 320

th,0 0 0

,0 0
( )

Figure 1. Equilibrium atmosphere inspired by the sedimentation model of Peng
& Nagai (2009) and the radial temperature profile of Vikhlinin et al. (2006).
The temperature (blue) and the mean molecular weight (green) increase with
radius while pressure (red) and density (magenta) decrease with radius at this
radial distance in the cluster model. The derivative of the entropy (purple) is
positive, indicating stability according to Equation (24).
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and the Reynolds number is given by

r
n

= »


v H
Re 3800. 330

th,0 0 0

,0
( )

These parameters were found by using Equations(B6) and
(B7) in Berlok & Pessah (2015) to estimate the values of c,0

and n,0. Following Latter & Kunz (2012) and Kunz et al.
(2012) we furthermore take the plasma-β at the bottom of the
atmosphere to be

b = 10 . 340
5 ( )

4.2. Solutions Obtained with a Pseudo-spectral Method

The linearized quasi-global equations (Equations (25)–(30))
are solved using a pseudo- spectral method, in a manner similar
to the analysis presented in Latter & Kunz (2012), see also
Boyd (2000). We discretize the six equations on a Chebyshev-
Gauss–Lobatto roots grid transformed onto the domain z=[0,
2]. The grid has N grid points, where N=200, and the
resulting algebraic equations constitute a generalized eigenva-
lue problem of size N6 . We use the same boundary conditions
as Latter & Kunz (2012), which means that δvz, δT/T, and d¶ Az
are set to zero at the boundaries. The latter condition
corresponds to δBx=0 at the boundaries, which implies that
the field remains vertical there. We furthermore impose δμ/
μ=0 at the boundaries.

Equations (25)–(30) only depend on the value of
p=k H n2x 0 , where n is the horizontal mode number. All

other parameters are set by our model. For each value of kx,
there are a number of modes that we designate with the vertical
mode number m, where m=1 is the fastest growing mode,
m=2 labels the second fastest growing mode, and so on. We
show the solution for n=5 in Figure 2, where the left panel
shows the m=1 mode, which is confined to the lower region
of the domain. The right panel shows the m=2 mode, which
has a slower growth rate but a larger vertical extent than the
m=1 mode. A general property of the solutions is thatthe
vertical extent of the perturbations increases with the mode
number m, while it does not depend on the mode number n.
Therefore, in a simulation where the instability is excited using
Gaussian noise, we expect the perturbations to grow fastest in
the lower region of the computational domain. This is indeed
the case, as we will see in Section 5.

The growth rates as a function of the wavenumber, kx, are
shown in Figure 3, where the solid lines are obtained using the
pseudo-spectral method and the crosses are obtained from
Athena simulations (see the next subsection). The maximum
growth rate is σmax≈10 Gyr−1 implying that the instability
can develop significantly on relevant timescales. The gradient
in the mean molecular weight acts to increase the growth rate
with respect to the homogeneous case. The maximum growth
rate found for the HPBI is, however, still smaller than the one
found for the HBI in Latter & Kunz (2012) due to the shallower
temperature gradient that we use in this work, which is inspired
by the models in Peng & Nagai (2009) as detailed above. The
temperature ratio, TZ/T0, is 2.5 in the model of Latter & Kunz
(2012) while it is only ∼1.65 in our model. The growth rate is
proportional to the gradient in temperature in the local, weak
magnetic field and fast heat conduction limit. A rough estimate
is therefore that their growth rate should be higher by a factor

of roughly 1.5, which we confirmed with the results of the full
quasi-global analysis.

4.3. Solutions Obtained with Athena

We have modified the publicly available MHD code Athena
(Stone et al. 2008) in order to be able to describe the nonlinear
evolution of weakly collisional atmospheres with non-uniform
composition. Our modified version of the code has anisotropic
heat conduction and diffusion of composition with spatially
dependent transport coefficients. These modifications, along
with tests, were described in detail in Berlok & Pessah (2016)
and applied to local settings, where the vertical extent of the
simulation domains considered was small compared to the
relevant scale height.
We use a pseudo-spectral method in order to test the

numerical solutions obtained with Athena in a quasi-global
setting. This is done by exciting the HPBI in the Athena
simulations using an exact eigenmode found in the quasi-global
linear theory. An example is shown in Figure 4, where four of
the components of the perturbation are shown for the n=5
and m=4 mode at t=3 in units of = =t H v 45 Myr0 0 0,th .
The growth rate can be measured in the simulations by

Figure 2. Select components of the eigenmode for the fastest (left, m = 1) and
second fastest (right, m = 2) eigenmode with n=5 and the real (imaginary)
part of the eigenmode shown in blue (green). A general rule seems to be that
the fastest growing modes have a small vertical extent while slower growing
modes have a larger vertical extent. This trend also appears in the homegeneous
setting (Latter & Kunz 2012) and it is consistent with the simulations presented
in Section 5.
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following the evolution of the amplitude of the perturbations.
We find that the error in the growth rate for this simulation is
less than a percent compared to the pseudo-spectral linear
theory. We have thoroughly tested this by running a suite of
simulations where we vary the n and m mode numbers. A total
of 42 simulations were run with n=1–8 and m=1–6 with six
of the simulations being degenerate2 in m. A comparison
between the growth rates obtained using the pseudo-spectral
method and the simulations is shown in Figure 3. In this figure,
each cross corresponds to an individual simulation,where the
eigenmode was excited exactly. The results shown in the figure
were obtained by fitting an exponential function to the time
evolution of the volume average of d pB 8x

2 for each
simulation. We have checked that the other components of
the perturbation (such as δvx and δμ/μ) also grow at the correct
rate. Due to the exact excitation of the modes the evolution is
exponential from the onset.
The simulations were run at half the resolution, 256×512,

of the simulations presented in Section 5 in order to expedite
the numerical simulations. As noted already by Latter & Kunz
(2012), the low resolution causes some discrepancy at the
highest wavenumbers. These tests illustrate the generally good
agreement between the numerical implementation in Athena
and our quasi-global linear theory using pseudo-spectral
methods.

5. INNER REGIONS OF THE ICM

In this section, we consider the long time evolution of
plasma instabilities in the inner regions of the ICM by
performing fully nonlinear simulations of the HPBI using
Athena. We describe the details of the numerical setup in
Section 5.1, the evolution of key quantities in Section 5.2 and
conclude by comparing a simulation of the HPBI with a
simulation of the HBI in Section 5.3.
Some of the simulations include Braginskii viscosity, which

is a numerical and theoretical challenge (Schekochihin
et al. 2005; Kunz et al. 2012). The reason is that microscale
instabilities are triggered if the magnitude of the pressure
anisotropy grows too large. The pressure tensor can become
anisotropic due to conservation of the first adiabatic invariant
of the ions. Specifically, when the pressure anisotropy exceeds
the limits given by

p p
- < - <^ 

B
p p

B

4 8
. 35

2 2 ( )
the firehose or mirror instabilities are triggered (Parker 1958).
This is an issue for the kind of simulations we consider because
the microscale instabilities are not correctly described by
Braginskii-MHD (Schekochihin et al. 2005).
Two different approaches used to handle this problem are

described in Kunz et al. (2012). The first approach is to use
high resolution and hope that the firehose instability grows
sufficiently fast in order to regulate the pressure anisotropy.
The second approach is to artificially limit the pressure
anisotropy to the interval given by Equation (35). The latter
approach is motivated by studies showing that the microscale
instabilities will likely saturate by driving the pressure
anisotropy back to marginal stability (Schekochihin
et al. 2008; Bale et al. 2009; Rosin et al. 2011) and a similar

Figure 3. Growth rates as a function of the horizontal wavenumber, kx, for the
10 fastest growing modes. The solid blue lines were obtained using the pseudo-
spectral method. Each cross corresponds to a simulation where the eigenmodes
were used for initial conditions. The numerical growth rate was found from the
subsequent exponential evolution.

Figure 4. Comparison between a simulation using Athena and the pseudo-
spectral method. A slice in the x-direction at t=3 is shown in dashed red and
the pseudo-spectral solution is shown in blue. The growth rate is σ/σ0=0.324
according to the pseudo-spectral method and σ/σ0=0.325 according to the
simulation, the error is less than a percent. This mode has n=5 and m=4 and
it is also indicated with a red cross in Figure 3.

2 They are complex conjugate solutions so the eigenvalues do differ in their
imaginary part,which is very small.
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approach has been used for the magnetorotational instability in
local studies of weakly collisional disks (Sharma et al. 2006). A
recent study of the solar wind showed that the firehose and
mirror thresholds also provide good constraints for the pressure
anisotropy in a multispecies plasma with electrons, hydrogen,
and helium ions (Chen et al. 2016). We have used both of these
approaches in our simulations.

5.1. Description of Numerical Setup and Overview of Results

We perform a suite of three simulations of the HPBI: one
without Braginskii viscosity (HPBI_isoP), one with Braginskii
viscosity where the pressure anisotropy is limited (HPBI_Blim)
by Equation (35) and one with Braginskii viscosity without
limiters (HPBI_Brag). We furthermore consider a simulation
where the atmosphere has uniform composition
(c0= cZ= 0.62) in order to compare the simulations with the
homogeneous case (HBI_Brag) in Section 5.3.

The initial condition is the plane–parallel atmosphere
introduced in Section 3. The instability is triggered by adding
Gaussian, subsonic noise in the velocity components with a
magnitude of 10−4. This initial condition, together with the
imposed perturbations, ensures an initial evolution, where all
the quantities evolve exponentially in time. In reality, the
agents driving the ICM dynamics are more complex and
involve, for example, the stirring by mergers in the outskirts of
the cluster and outflows from active galactic nuclei in the
cluster core. All simulations have a spatial extent of ´H H20 0
(with H0= 1 in code units). The resolution used is
512×1024. In terms of the dimensionless units introduced
above, the coefficients for anisotropic heat diffusivity and
Braginskii viscosity are k mr= ´ - -

 T1.4 10 2 5 2 1

and n r= ´ - -
 T2.6 10 4 5 2 1.

The three simulations of the HPBI are shown in
Figure 5,where the evolution of the mean molecular weight
and the magnetic field lines is followed as a function of time
with snapshots at t/t0=0, 25, 40, 100, and 200, with
= =t H v 45 Myr0 0 0,th . In this figure, a high (low) concentra-

tion of helium is indicated with green (purple) and the magnetic
field lines are shown as solid black lines. The top row of panels
was created from HPBI_isoP which did not include Braginskii
viscosity, while the middle row (HPBI_Blim) and bottom row
(HPBI_Brag) of panels did include Braginskii viscosity.

The various panels in Figure 5 illustrate how the magnetic
field, which is initially vertical, becomes rapidly tangled. The
temperature profile, which is not shown here does not vary
significantly as time progresses. The composition evolves
rapidly with bubbles of helium sinking down to the center of
the core. By the end of the simulation, the helium content has
been very well mixed in HPBI_isoP. In HPBI_Brag, blobs of
gas with a high helium content have sunk toward the center of
the cluster, but they have retained their structure and have not
mixed with their new environment. This lack of mixing can be
understood from the ability of Braginskii viscosity to make the
magnetic field retain a coherent structure over larger distances
than one would find for a simulation with isotropic pressure
(see the discussion of the MTI in Kunz et al. 2012). This
feature, along with the fact that the magnetic field is tied to the
gas, suppresses small-scale mixing of the helium content. This
implies that the spatial distribution of helium might be more
patchy in a viscous ICM than in a non-viscous ICM.

5.2. Evolution of Composition, Temperature, Magnetic Field
Inclination, and Energy Densities

The evolution of the composition gradient can be illustrated
by taking averages along the x-direction, designated by the
brackets áñx. This is shown in the top row of panels in Figure 6,
which have been produced at the same times as the snapshots
shown in Figure 5. We see that on very long timescales of the
order of 9 Gyr (t/t0= 200) the instability, on average, acts to
remove the gradient in composition that originally gave rise to
it. Note, however, that the gradient in composition is rather
long-lived as its profile remains rather unaltered until about
4.5 Gyr (t/t0= 100).
We have limited our study to a binary mixture of hydrogen

and helium, the latter being the most important element leading
to potential biases in X-ray measurements (Markevitch 2007).
Our approach has the advantage that enrichment from galaxies
can be ignored in our simulations because the mass of helium
in the ICM is much greater than the stellar component (see,
e.g., Andreon 2010). This is not the case for heavier metals for
which enrichment becomes important. A systematic study of
mixing in the presence of imposed MHD turbulence including
the injection of pollutants can be found in Sur et al. (2014)
along with a detailed analysis of the mixing process.
The evolution of the temperature gradient is less dramatic, as

illustrated in the middle row of panels in Figure 6. Changes in the
temperature profile are also modest when the composition is
uniform, as seen in, for instance, Kunz et al. (2012) and Figure 8.
It is already evident from Figure 5 that the magnetic field

changes its inclination with respect to the direction perpend-
icular to gravity as time progresses. This can be further studied
by considering the average inclination angle defined by (Parrish
& Quataert 2008)

qá ñ = á ñ- bsin . 36B x z x
1(∣ ∣) ( )

The evolution of this quantity is shown in the bottom row of
panels in Figure 6. We see that the instability grows fastest at the
bottom of the atmosphere but increases its region of influence as
time progresses. The evolution of qá ñB x is initially fast compared
to the changes in either composition or temperature and the
average angle has changed significantly at most heights by
1.8 Gyr (t/t0= 40).3 However, on timescales of the order of
4.5 Gyr (t/t0= 100), qá ñB x seems to settle at around ∼30°–50°
and the overall distribution of angles shows little evolution until
the end of the run at 9 Gyr (t/t0= 200). The change in average
inclination angle might have consequences for the cooling flow
problem (Fabian 1994) because heat transport is primarily along
magnetic field lines. We discuss this in more detail in terms of the
Spitzer parameter below.
We consider the evolution of the the kinetic and magnetic

energy densities by calculating volume averages, designated by
the brackets áñ, and shown in Figure 7 as a function of time.
Braginskii viscosity acts to inhibit the growth rate of the
instability and we therefore see the highest growth rate in
HPBI_isoP, followed by HPBI_Blim (which is less viscous
than HPBI_Brag due to the limiters) and then HPBI_Brag. All
of the simulations saturate with magnetic and kinetic energy
density components in rough equipartition with pB 8z

2 having
increased by a factor of about 10.

3 In the second panel of the bottom row, it is evident that Braginskii viscosity
slows down the instability.
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5.3. Comparison between HBI and HPBI

In order to compare our results with previous work on the
HBI, where the plasma is assumed to be of uniform
composition, we performed a simulation (HBI_Brag) using
the same atmosphere as for the HPBI but with c0=cZ. All
other aspects of this simulation are identical to run HPBI_Brag.
The evolution of the temperature and the magnetic field is
shown in Figure 8. The gradient in composition leads to a
slightly faster growth rate with respect to the homogeneous
case, as predicted by linear theory (Pessah & Chakraborty 2013;
Berlok & Pessah 2015).

We see that both instabilities reorient the magnetic field,
driving the average inclination of the magnetic field to be more
horizontal (azimuthal). This feature of the HBI has been argued
to be of importance for the cooling flow problem because a
magnetic field that is predominantly perpendicular to gravity
tends to insulate the core from heat transport from the outskirts
of the cluster (Parrish & Quataert 2008; Bogdanović
et al. 2009; Parrish et al. 2009). For a vertical (radial) magnetic
field the heat flux is given by the Spitzer value

c= -
¶
¶

Q
T

z
, 37˜ ( )

Figure 5. Evolution of the HPBI as a function of time in units of = =t H v 45 Myr0 0 0,th . The size of the box is ´H H20 0 with =H 40 kpc0 . The bottom of the
atmosphere has T0=5.8 keV and c0=0.52 while the top of the atmosphere has T=9.6 keV and c=0.62, values found at r0=160 kpc and
= + =r r H2 240 kpc0 0 in the model of Peng & Nagai (2009). The top row of panels includes anisotropic heat conduction and the middle and bottom rows

also include Braginskii viscosity. The middle row uses limiters. An animated version is available at http://www.nbi.dk/∼berlok/movies/icm_quasi_global.html.
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while the heat flux is zero for a horizontal (azimuthal) field. In
Berlok & Pessah (2016), we showed that when considering a
local domain in an isothermal atmosphere, the HPBI drives the
magnetic field to have an average inclination angle of 45°. This
is in contrast to the uniform case, where the HBI drives the
magnetic field toward 0° (Parrish & Quataert 2008). This
feature of the HPBI led us to speculate that a composition
gradient might be able to alleviate the cooling flow problem by
limiting the average magnetic field inclination. We can now
test this idea in our quasi-global simulations where the
temperature gradient has been obtained from Vikhlinin
et al. (2006).

We consider the evolution of the volume-averaged Spitzer
parameter (Parrish & Quataert 2008)

= á ñz Qf Q , 38S cˆ · ˜ ( )
as a function of time. This quantity shows how effective heat
conduction is at transporting heat in the radial direction in the
cluster compared to the case of a vertical (radial) magnetic field
(or unmagnetized heat conduction). The same parameter was
used to parameterize the effectiveness of helium sedimentation
in the model of Peng & Nagai (2009). We show the evolution
of fS in the fifth panel of Figure 7 with the HBI simulation
(∇μ= 0) indicated with a blue solid line and the HPBI
simulation ( m ¹ 0) indicated with a red solid line. Initially,
the volume-averaged Spitzer parameter decreases more rapidly
in the HBPI simulation than in the HBI simulation, the reason
being the slower growth rate in the absence of a composition

gradient. The inclusion of a composition gradient, however,
leads to an increase in the volume-averaged Spitzer parameter
at late times compared to the homogeneous case. We find that
fS≈0.20 ( fS≈ 0.17) for the HPBI (HBI) at t/t0=200. This
corresponds to an increase in heat flux by ∼20% with respect to
the homogeneous case.

6. OUTER REGIONS OF THE ICM

In this section, we consider two simulations of the outer parts
of the ICM, where we assume that the initial magnetic field is
perpendicular to gravity, i.e., horizontal. In one of these
simulations, labeled MTI_Brag, the plasma is assumed to have
uniform composition and in the other one, labeled MTCI_Brag,
the composition is assumed to decrease with height (radius).
The bottom of the model plane–parallel atmosphere is located
at r=0.65Mpc, corresponding roughly to the radius indicated
with an A in Figure8 in Berlok & Pessah (2015).
As in Section 5, we use reflecting boundary conditions at the

top and bottom of the domain. The MTCI creates vertical
motions that will eventually reach the top and bottom of the
domain, potentially influencing the nonlinear evolution of the
instability. In order to circumvent this problem, we implement
a procedure that has successfully been applied to the MTI by
Parrish & Stone (2007) and Kunz et al. (2012). We sandwich
the unstable layer between two buffer zones in which we add
isotropic heat conduction and viscosity in order to damp any
motions making their way into these regions. This results in
two stable layers at the top and bottom, where the density
decreases exponentially away from the mid-plane and the

Figure 6. Key quantities averaged along x as a function of height z scaled by =H 40 kpc0 , at times t/t0=0, 25, 40, 100, and 200, with t0=45 Myr, for the
simulation without viscosity (blue), with viscosity and limiters (magenta) and with viscosity but without limiters (red). Top: average mean molecular weight. Middle:
average temperature. Bottom: average inclination angle of the magnetic field.
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temperature and composition are constant, with values T0 and
c0 (TZ and cZ) in the lower (upper) stable layer.

We use the equilibrium for an initially horizontal magnetic
field given in Berlok & Pessah (2016), i.e., the temperature and
composition profiles given by

= + ¢T z T s z , 390 T( ) ( )
= + ¢c z c s z , 400 c( ) ( )

in the middle of the computational domain ( ¢ = -z z H 40 and
< <H z H4 3 40 0 ), where = -s T T HT Z 0 0( ) is the slope in

temperature and = -s c c Hc Z 0 0( ) is the slope in composition.
The pressure in the unstable region is given by

⎛
⎝⎜

⎞
⎠⎟

m
m

¢ =
¢ ¢

a

P z P
T z z

T
, 410

0 0

( ) ( ) ( ) ( )

where μ(z) is related to c(z) by Equation (4) and the constant
coefficient α is given by

⎛
⎝⎜

⎞
⎠⎟a

m
= -

+
T

H s T s

4

4 5
. 420

0 T 0 0 c
( )

Due to the very strong time-step constraint arising from the
non-ideal terms, we have, however,opted to use significantly
reduced values of c and n, by dividing the expected values by
a factor of 10. The dimensionless values used in the simulations
are therefore k mr= -

 T0.12 5 2 1 and n = ´ -
 T3.3 10 3 5 2

r-1. Both temperature and composition decrease with radius
with T0=10.2 keV and c0=0.32 at the bottom of the
unstable domain and T=9 keV and c=0.27 at the top for the
non-uniform simulation (c0= cZ= 0.32 for the uniform
simulation). Furthermore, we use β=105 and include
Braginskii viscosity without limiters. As for the inner region,
these simulations start from hydrostatic equilibrium with a
subsonic velocity perturbation. In real clusters, the turbulence
caused by accretion of material onto the cluster can contribute
with a significant fraction of the pressure support needed to
counteract gravity (Lau et al. 2009; Nelson et al. 2014).

The evolution of the initial horizontal magnetic field and the
temperature is shown in Figure 9 for MTI_Brag (top row) and
MTCI_Brag (bottom row). In these simulations, the unit of
time is = =t H v 2300 0 0,th Myr. Note that because this is

roughly a factor of fivelonger than the t0 characterizing the
inner cluster it is only necessary to evolve the simulations up to
50 t0 to cover timescales of the order of 10+ Gyr. For the MTI
(top row) the evolution is very similar to the one presented for
the MTI with Braginskii viscosity in Figure17 in Kunz et al.
(2012) except that the growth rate is significantly slower in the
simulation presented here. This is simply due to the much
shallower temperature gradient that we are using (Vikhlinin
et al. 2006). As predicted by theory (Pessah & Chakra-
borty 2013; Berlok & Pessah 2015), we observe that the
instability grows at an even slower rate when a gradient in
composition is included (bottom row of Figure 9). For these
parameters, linear theory predicts that the maximum growth
rate4 of the MTI is σ=1.42 Gyr−1, while the MTCI only has a
maximum growth rate of σ=1.09 Gyr−1. The maximum
growth rate is only ∼20% slower but this difference is able to
significantly alter the final state of the system in this case. The
instabilities are still in the exponential phase and have not
reached saturation at the end of the simulation.

7. DISCUSSION

Understanding the distribution of helium in the ICM is an
open problem with important implications for astrophysics and
cosmology (Markevitch 2007; Peng & Nagai 2009).
The assumption of a spatially uniform composition of helium

in the ICM is routinely applied when interpreting X-ray
observations of galaxy clusters. This can lead to biases in the
estimates of various key cluster parameters if a composition
gradient is present, which can in turn propagate into estimates
of the inferred cosmological constants (Markevitch 2007; Peng
& Nagai 2009).
Current models to address this problem are one-dimensional

and treat the turbulent, magnetized nature of the medium in a
very crude way (Fabian & Pringle 1977; Gilfanov &
Syunyaev 1984; Chuzhoy & Nusser 2003; Chuzhoy &
Loeb 2004; Peng & Nagai 2009; Shtykovskiy & Gilfa-
nov 2010). This usually amounts to parameterizingthe
presence of magnetic fields so that its main effect is to slow
down the sedimentation process at the same rate at all radii.
The advantage of these kindsof models is that they can be
evolved for long timescales. In general terms, they predict

Figure 7. Evolution of the magnetic and kinetic energies in the simulations of the HPBI with blue (HPBI_isoP), red (HPBI_Blim), and magenta (HPBI_Brag) with
spatial averages of rv 2x

2 (first panel), rv 2z
2 (second panel), pB 8x

2 (third panel), and pB 8z
2 (fourth panel). In the fifth panel, we show the evolution of the volume-

averaged Spitzer parameter, = á ñf Q QcS
˜ for the HBI and the HPBI. The initial growth of the HPBI is faster than for the HBI,but the final state of the simulation with

a composition gradient has a heat flux that is roughly 20% higher than for the uniform simulation. More information about this panel can be found in Section 5.3.

4 Found by solving the dispersion relation for a grid of values in k-space and
taking the maximum value.
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helium profiles that peak off-center when the (fixed) temper-
ature profile is typical of cool-core clusters (Peng &
Nagai 2009).

The approach employed, however, does not allow usto take
into consideration the fact that the weakly collisional nature of
the ICM renders its properties anisotropic due to inefficient
transport across the magnetic field. When the effects of
anisotropic heat conduction, viscosity, and particle diffusion
are considered, with given initial thermal and composition
profiles, a wide variety of instabilities, which are absent in one-
dimensional settings, can play an important role in the plasma
dynamics (Balbus 2000, 2001; Quataert 2008; Kunz 2011;
Pessah & Chakraborty 2013).

Ideally, it would be desirable to evolve, in a global setting,
the system of equations that describes the evolution of the
thermal and composition gradients of a weakly collisional
plasma (with initial cosmic composition) in the potential well
of a dark-matter halo. In lieu of pursuing this arguably daunting
task at once, we have opted to analyze this problem by
developing a better understanding of the plasma dynamics
using a number of approximations, which can, in principle, be
relaxed in future studies:

(1) We have adopted as a working model a binary mixture
composed of hydrogen and helium in the Braginskii-MHD
approximation with Braginskii viscosity (Braginskii 1965;
Pessah & Chakraborty 2013). This approach is known to be
subject to small-scale instabilities that need to be dealt with

appropriately in numerical simulations (Schekochihin
et al. 2005; Kunz et al. 2012). The firehose and mirror
instabilities can be more accurately captured using hybrid
particle-in-cell codes where the ions are treated as particles and
the electrons are treated as a fluid (see, for instance, Kunz
et al. 2014). Studies of the firehose and mirror instabilities
normally assume a hydrogen plasma. Extending such simula-
tions in order to study the kinetics of a multispecies plasma
might therefore give new insights on how to incorporate
microscale instabilities in Braginskii-MHD simulations of
binary mixtures.
Particle-in-cell simulations have shown that the heat

conductivitity, c, can be significantly reduced by the action
of the ion mirror instability (Komarov et al. 2016; Riquelme
et al. 2016), the latter study also finding a reduction due to the
electron whistler instability. The suppression of conductivity is
found by Komarov et al. (2016) to be due to a combination of
trapping of electrons in δB/B∼1 magnetic traps and a
decreased mean-free path of collisions due to pitch-angle
scattering off microscale fluctuations. The suppression of heat
flux with respect to the Spitzer value in the simulations we
present in Section 5.3 is due to the change in magnetic field
orientation. Both of these effects yield a suppression of the heat
flux by a factor of ∼5, a result that has also been found in
magnetic turbulence (Narayan & Medvedev 2001; Chandran &
Maron 2004). If a large fraction of the plasma is mirror
unstable, the two effects could in principle act in unison to give

Figure 8. Temperature and magnetic field evolution as function of time for the HBI (HBI_Brag, upper row) and the HPBI (HPBI_Brag, lower row) in units of
= =t H v 45 Myr0 0 0,th . The size of the box is ´H H20 0 with =H 40 kpc0 . The evolution of the composition for HPBI_Brag is shown in the bottom row of

Figure 5, while HBI_Brag has uniform composition at all times. Both simulations included anisotropic heat conduction and Braginskii viscosity without limiters.
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a total reduction by a factor of ∼25. A reduction of c due to
microscale instabilities could, however, also have conse-
quences for the importance of the HBPI and the MTCI, given
that their growth rates depend on fast heat conduction along
magnetic field lines.

More recently, Xu & Kunz (2016) studied the stability of a
collisionless, thermally stratified plasma by using linear Vlasov
theory and described the kinetic version of the MTI. Moreover,
an electron version of the MTI, the eMTI, was found to operate
at sub-ion-Larmor scales and have a faster growth rate than the
long wavelength kinetic MTI. The dispersion relation derived
in Xu & Kunz (2016) can, in principle, be used to determine
whether the MTCI also carries over to the collisionless regime.
Subsequent particle-in-cell simulations could then be used to
assess the differences with respect to the Braginskii-MHD
framework employed in this paper. At present, such compar-
isons have yet to be done in homogeneous settings. The
nonlinear outcome of the combined presence of the long
wavelength kinetic MTI and the eMTI has yet to be explored
by dedicated particle-in-cell in simulations.

(2) We have simplified the geometry of the problem by
considering a plane–parallel atmosphere. This approach has
been applied with success in a wide variety of astrophysical
settings. Its accuracy depends on the phenomena under study
having radial scales that are smaller than the fiducial radius at
which the model is adopted. We have improved on our
previous work (Pessah & Chakraborty 2013; Berlok &

Pessah 2015, 2016), in which the domains under consider-
ationwere local in both radius and azimuth, and developed a
quasi-global approach, extending previous work in homoge-
neous settings (Kunz et al. 2012; Latter & Kunz 2012). This
enabled us to consider domains that are not necessarily small
compared to the thermal scale height at the fiducial radius.
(3) The helium concentration profile in galaxy clusters is,

unfortunately,not directly observable (Markevitch 2007). In
order to construct our model atmospheres,we relied on current
one-dimensional helium sedimentation models (Peng &
Nagai 2009). By considering these as initial conditions, we
investigated the evolution of a number of instabilities that feed
off the gradients in temperature and composition in the inner
regions as well as the outskirts of the ICM. This approach
assumes that the timescales for the evolution of the temperature
and composition profiles are long compared to the timescales
for the instabilities to grow significantly (Berlok & Pes-
sah 2015). While this seems to be a reasonable assumption, the
fact that the large-scale gradients, from which the instabilities
feed off, are unable to evolve prevents us from understanding
how the instabilities interact with the processes that drive their
evolution at a more fundamental level (Burgers 1969; Bahcall
& Loeb 1990).
While our approach cannot directly predict the evolution of

the helium distribution in the ICM, we have been able to learn a
few interesting things about how composition gradients can
influence the dynamics of the weakly collisional medium.

Figure 9. Evolution of the MTI (upper row) and the MTCI (lower row) as a function of time in units of = =t H v 230 Myr0 0 0,th . The size of the unstable part of the
box is ´H H0 0 with H0=300 Mpc. The bottom of the unstable region has T0=10.2 keV, while the top of the unstable region has T=9 keV, values found at
r0=0.65 Mpc and r=r0+H0=0.95 Mpc in the model of Peng & Nagai (2009). The MTI (upper row) has a uniform composition, while the MTCI (lower row)
has c0=0.32 at the bottom and c=0.27 at the top.
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In the inner region of the ICM, the nonlinear evolution of our
model shows that helium rich material, initially at the top of the
atmosphere, will fall down onto the inner core of the cluster.
The relevant timescale for mixing to occur is of the order of a
few gigayears. It is important to emphasize that this process
cannot be attributed to standard convection driven by
composition gradients since the Ledoux criterion
(Ledoux 1947) is fulfilled in the model atmospheres we
employed. The driving mechanism is the generalization of the
heat-flux-driven buoyancy instability HBI, which we have
termed the heat- and particle-flux-driven buoyancy instability
(HPBI). We analyzed in some detail the effects that the
evolution of the magnetic fields has on the thermal conductivity
of the plasma to assess whether composition gradients can
alleviate the core insulation observed in homogeneous settings
(Parrish & Quataert 2008). Beyond a few gigayearsthe average
inclination angle of the magnetic field is close to ∼30°–50°
resulting in an averaged Spitzer parameter higher by about 20%
than the value obtained in a corresponding homogeneous
simulation. The distribution of composition is more patchy in
the simulations where Braginskii viscosity is included because
it can inhibit mixing at smaller scales. The main conclusions
described here, however, seem to be rather insensitive to
Braginskii viscosity when thecomposition is averaged along
the azimuthal direction.

We also investigated the dynamics of the outskirts of the
ICM, where both the temperature and the composition are
expected to decrease with increasing radius (Vikhlinin
et al. 2006; Peng & Nagai 2009). In this case, the mechanism
driving instabilities is the generalization of the MTI, which we
have termed the MTCI. The shallower gradients characterizing
current models imply that the instabilities evolve slowly and
there is not enough time for them to evolve in the strong
nonlinear regime even after several gigyears. Therefore, in the
outskirts of the cluster, the instabilities are rather inefficient at
erasing the composition gradients.

This mismatch between fast growing instabilities in the inner
core and rather slow instabilities in the outskirts could imply
that compositions gradients in cluster cores might be shallower
than predicted by one-dimensional models. One could spec-
ulate about the long-term outcome of the interplay between the
various competing processes, but it seems to be safer to
develop more self-consistent models in which the instabilities
can develop in a global setting where the physics driving
helium sedimentation is accounted for. One alternative,
intermediate step in developing these models could consist of
using the type of numerical simulations we have employed here
to develop more physically motivated effective models for
mixing that can be incorporated in improved one-dimensional
models.

The weakly collisional, magnetized nature of the ICM is
likely to have an impact on the long-term evolution of the gas
dynamics, including the issue of whether helium can sediment
efficiently. Our work constitutes the first few steps in this
direction. More quantitative statements will demand improved
models that incorporate the physics driving the sedimentation
process, while simultaneously accounting for the anisotropic
transport properties of the medium.
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